Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to fix "NaN or infinity" issue for sparse matrix in python?

I'm totally new to python. I've used some code found online and I tried to work on it. So I'm creating a text-document-matrix and I want to add some extra features before training a logistic regression model.

Although I've checked my data with R and I get no error, when I run the logistic regression I get the error "ValueError: Array contains NaN or infinity." I'm not getting the same error when I do not add my own features. My features are in the file "toPython.txt".

Mind the two calls to assert_all_finite function that returns "None"!

Below is the code I use and the output I get:

def _assert_all_finite(X):
if X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all():
    raise ValueError("Array contains NaN or infinity.")

def assert_all_finite(X):
_assert_all_finite(X.data if sparse.issparse(X) else X)

def main():

print "loading data.."
traindata = list(np.array(p.read_table('data/train.tsv'))[:,2])
testdata = list(np.array(p.read_table('data/test.tsv'))[:,2])
y = np.array(p.read_table('data/train.tsv'))[:,-1]

tfv = TfidfVectorizer(min_df=12,  max_features=None, strip_accents='unicode',  
    analyzer='word',stop_words='english', lowercase=True,
    token_pattern=r'\w{1,}',ngram_range=(1, 1), use_idf=1,smooth_idf=1,sublinear_tf=1)

rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001, 
                         C=1, fit_intercept=True, intercept_scaling=1.0, 
                         class_weight=None, random_state=None)

X_all = traindata + testdata
lentrain = len(traindata)

f = np.array(p.read_table('data/toPython.txt'))
indices = np.nonzero(~np.isnan(f))
b = csr_matrix((f[indices], indices), shape=f.shape, dtype='float')

print b.get_shape
**print assert_all_finite(b)**
print "fitting pipeline"
tfv.fit(X_all)
print "transforming data"
X_all = tfv.transform(X_all)
print X_all.get_shape

X_all=hstack( [X_all,b], format='csr' )
print X_all.get_shape

**print assert_all_finite(X_all)**

X = X_all[:lentrain]
print "3 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=3, scoring='roc_auc'))

And the output is:

loading data..
<bound method csr_matrix.get_shape of <10566x40 sparse matrix of type '<type 'numpy.float64'>'
with 422640 stored elements in Compressed Sparse Row format>>
**None**
fitting pipeline
transforming data
<bound method csr_matrix.get_shape of <10566x13913 sparse matrix of type '<type 'numpy.float64'>'
with 1450834 stored elements in Compressed Sparse Row format>>
<bound method csr_matrix.get_shape of <10566x13953 sparse matrix of type '<type 'numpy.float64'>'
with 1873474 stored elements in Compressed Sparse Row format>>
**None**
3 Fold CV Score: 
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python27\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 523, in runfile
execfile(filename, namespace)
File "C:\Users\Stergios\Documents\Python\beat_bench.py", line 100, in <module>
main()
File "C:\Users\Stergios\Documents\Python\beat_bench.py", line 97, in main
print "3 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=3, scoring='roc_auc'))
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1152, in cross_val_score
for train, test in cv)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 517, in __call__
self.dispatch(function, args, kwargs)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 312, in dispatch
job = ImmediateApply(func, args, kwargs)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 136, in __init__
self.results = func(*args, **kwargs)
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1064, in _cross_val_score
score = scorer(estimator, X_test, y_test)
File "C:\Python27\lib\site-packages\sklearn\metrics\scorer.py", line 141, in __call__
return self._sign * self._score_func(y, y_pred, **self._kwargs)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 403, in roc_auc_score
fpr, tpr, tresholds = roc_curve(y_true, y_score)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 672, in roc_curve
fps, tps, thresholds = _binary_clf_curve(y_true, y_score, pos_label)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 504, in _binary_clf_curve
y_true, y_score = check_arrays(y_true, y_score)
File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 233, in check_arrays
_assert_all_finite(array)
File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 27, in _assert_all_finite
raise ValueError("Array contains NaN or infinity.")
ValueError: Array contains NaN or infinity.

Any ideas? Thank you!!

like image 813
Stergios Avatar asked Sep 22 '13 19:09

Stergios


People also ask

How do I fix NaN error in Python?

We can replace NaN values with 0 to get rid of NaN values. This is done by using fillna() function. This function will check the NaN values in the dataframe columns and fill the given value.

How does Python deal with sparse matrix?

Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements, we only store non-zero elements. This means storing non-zero elements with triples- (Row, Column, value).

How do you store a sparse matrix in python?

Save a sparse matrix to a file using . npz format. Either the file name (string) or an open file (file-like object) where the data will be saved.

How do you transpose a sparse matrix in python?

Transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[][] is obtained by changing A[i][j] to A[j][i].


2 Answers

I found that doing the following, assuming sm is a sparse matrix (mine was CSR matrix, please say something about other types if you know!) worked quite nicely:

Manually replacing nans with appropriate numbers in data vector:

In [4]: np.isnan(matrix.data).any()
Out[4]: True

In [5]: sm.data.shape
Out[5]: (553555,)

In [6]: sm.data = np.nan_to_num(sm.data)

In [7]: np.isnan(matrix.data).any()
Out[7]: False

In [8]: sm.data.shape
Out[8]: (553555,)

So we no longer have nan values, but matrix explicitly encodes those zeros as valued indices.

Removing explicitly encoded zero values from sparse matrix:

In [9]: sm.eliminate_zeros()

In [10]: sm.data.shape
Out[10]: (551391,)

And our matrix actually got smaller now, yay!

like image 164
NirIzr Avatar answered Sep 18 '22 11:09

NirIzr


I usually use this function:

x = np.nan_to_num(x)

Replace nan with zero and inf with finite numbers.

like image 23
lucky6qi Avatar answered Sep 20 '22 11:09

lucky6qi