The question is about feature detection concept. I'm stuck after I finding the corner of image and I want to know how to finding the feature point within the computed corners.
Suppose I have grayscale image that have data like this
A = [ 1 1 1 1 1 1 1 1;
1 3 3 3 1 1 4 1;
1 3 5 3 1 4 4 4;
1 3 3 3 1 4 4 4;
1 1 1 1 1 4 6 4;
1 1 1 1 1 4 4 4]
if I use
B = imregionalmax(A);
the result would be like this
B = [ 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 0;
0 1 1 1 0 1 1 1;
0 1 1 1 0 1 1 1;
0 0 0 0 0 1 1 1;
0 0 0 0 0 1 1 1]
The question is how do I pick the highest peak inside max local region (in sample how did I chose 5 from 3 and 6 from 4)?
My idea was using B to detect each region and use imregionalmax()
again but I'm not good at coding and I need some advice or other ideas.
There are a couple of other easy ways to implement a 2D peak finder: ordfilt2
or imdilate
.
ordfilt2
The most direct method is to use ordfilt2
, which sorts values in local neighborhoods and picks the n-th value. (The MathWorks example demonstrates how to implemented a max filter.) You can also implement a 3x3 peak finder with ordfilt2
by, (1) using a 3x3 domain that does not include the center pixel, (2) selecting the largest (8th) value and (3) comparing to the center value:
>> mask = ones(3); mask(5) = 0 % 3x3 max
mask =
1 1 1
1 0 1
1 1 1
There are 8 values considered in this mask, so the 8-th value is the max. The filter output:
>> B = ordfilt2(A,8,mask)
B =
3 3 3 3 3 4 4 4
3 5 5 5 4 4 4 4
3 5 3 5 4 4 4 4
3 5 5 5 4 6 6 6
3 3 3 3 4 6 4 6
1 1 1 1 4 6 6 6
The trick is compare this to A
, the center value of each neighborhood:
>> peaks = A > B
peaks =
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
imdilate
Image dilation is usually done on binary images, but grayscale image dilation is simply a max filter (see Definitions section of imdilate
docs). The same trick used with ordfilt2
applies here: define a neighborhood that does not include the center neighborhood pixel, apply the filter and compare to the unfiltered image:
B = imdilate(A, mask);
peaks = A > B;
NOTE: These methods only find a single pixel peak. If any neighbors have the same value, it will not be a peak.
The function imregionalmax gives you the 8-connected region containing the maximum and its 8 neighbours (i.e. the 3x3-regions you are seeing). You could then use morphological operations with the same 3x3 structural element to thin out those regions to their centers. E.g.
B = imregionalmax(A);
C = imerode(B, ones(3));
or equivalently
B = imregionalmax(A);
D = bwmorph(B, 'erode');
Alternatively you could write your own maximum finding function using block-processing:
fun = @(block) % your code working on 'block' goes here ...
B = blockproc(A, ones(3), fun)
But most likely this will be slower than the built-in functions. (I don't have the toolbox available right now, so I can't try that out.)
Also have a look here and here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With