I've just implemented collision detection using SAT and this article as reference to my implementation. The detection is working as expected but I need to know where both rectangles are colliding.
I need to find the center of the intersection, the black point on the image above (but I don't have the intersection area neither). I've found some articles about this but they all involve avoiding the overlap or some kind of velocity, I don't need this.
The information I've about the rectangles are the four points that represents them, the upper right
, upper left
, lower right
and lower left
coordinates. I'm trying to find an algorithm that can give me the intersection of these points.
I just need to put a image on top of it. Like two cars crashed so I put an image on top of the collision center. Any ideas?
There is another way of doing this: finding the center of mass of the collision area by sampling points.
Create the following function:
bool IsPointInsideRectangle(Rectangle r, Point p);
Define a search rectangle as:
TopLeft = (MIN(x), MAX(y))
TopRight = (MAX(x), MAX(y))
LowerLeft = (MIN(x), MIN(y))
LowerRight = (MAX(x), MIN(y))
Where x and y are the coordinates of both rectangles.
You will now define a step for dividing the search area like a mesh. I suggest you use AVG(W,H)/2 where W and H are the width and height of the search area.
Then, you iterate on the mesh points finding for each one if it is inside the collition area:
IsPointInsideRectangle(rectangle1, point) AND IsPointInsideRectangle(rectangle2, point)
Define:
Xi : the ith partition of the mesh in X axis.
CXi: the count of mesh points that are inside the collision area for Xi.
Then:
And you can do the same thing with Y off course. Here is an ilustrative example of this approach:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With