Assuming I have the tables student
, club
, and student_club
:
student { id name } club { id name } student_club { student_id club_id }
I want to know how to find all students in both the soccer (30) and baseball (50) club.
While this query doesn't work, it's the closest thing I have so far:
SELECT student.* FROM student INNER JOIN student_club sc ON student.id = sc.student_id LEFT JOIN club c ON c.id = sc.club_id WHERE c.id = 30 AND c.id = 50
When you need to establish a many-to-many relationship between two or more tables, the simplest way is to use a Junction Table. A Junction table in a database, also referred to as a Bridge table or Associative Table, bridges the tables together by referencing the primary keys of each data table.
HAVING Clause is used to filter record from the groups based on the specified condition.
I was curious. And as we all know, curiosity has a reputation for killing cats.
The cat-skinning environment for this test:
student.id
is student.stud_id
and club.id
is club.club_id
here.EXPLAIN ANALYZE
.ALTER TABLE student ADD CONSTRAINT student_pkey PRIMARY KEY(stud_id ); ALTER TABLE student_club ADD CONSTRAINT sc_pkey PRIMARY KEY(stud_id, club_id); ALTER TABLE club ADD CONSTRAINT club_pkey PRIMARY KEY(club_id ); CREATE INDEX sc_club_id_idx ON student_club (club_id);
club_pkey
is not required by most queries here.
Primary keys implement unique indexes automatically In PostgreSQL.
The last index is to make up for this known shortcoming of multi-column indexes on PostgreSQL:
A multicolumn B-tree index can be used with query conditions that involve any subset of the index's columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
Total runtimes from EXPLAIN ANALYZE
.
SELECT s.stud_id, s.name FROM student s JOIN student_club sc USING (stud_id) WHERE sc.club_id IN (30, 50) GROUP BY 1,2 HAVING COUNT(*) > 1;
SELECT s.stud_id, s.name FROM student s JOIN ( SELECT stud_id FROM student_club WHERE club_id IN (30, 50) GROUP BY 1 HAVING COUNT(*) > 1 ) sc USING (stud_id);
SELECT s.stud_id, s.name FROM student s WHERE student_id IN ( SELECT student_id FROM student_club WHERE club_id = 30 INTERSECT SELECT stud_id FROM student_club WHERE club_id = 50 );
SELECT s.stud_id, s.name FROM student s WHERE s.stud_id IN (SELECT stud_id FROM student_club WHERE club_id = 30) AND s.stud_id IN (SELECT stud_id FROM student_club WHERE club_id = 50);
SELECT s.stud_id, s.name FROM student s WHERE EXISTS (SELECT * FROM student_club WHERE stud_id = s.stud_id AND club_id = 30) AND EXISTS (SELECT * FROM student_club WHERE stud_id = s.stud_id AND club_id = 50);
SELECT s.stud_id, s.name FROM student s JOIN student_club x ON s.stud_id = x.stud_id JOIN student_club y ON s.stud_id = y.stud_id WHERE x.club_id = 30 AND y.club_id = 50;
The last three perform pretty much the same. 4) and 5) result in the same query plan.
Fancy SQL, but the performance can't keep up:
SELECT s.stud_id, s.name FROM student AS s WHERE NOT EXISTS ( SELECT * FROM club AS c WHERE c.club_id IN (30, 50) AND NOT EXISTS ( SELECT * FROM student_club AS sc WHERE sc.stud_id = s.stud_id AND sc.club_id = c.club_id ) );
SELECT s.stud_id, s.name FROM student AS s WHERE NOT EXISTS ( SELECT * FROM ( SELECT 30 AS club_id UNION ALL SELECT 50 ) AS c WHERE NOT EXISTS ( SELECT * FROM student_club AS sc WHERE sc.stud_id = s.stud_id AND sc.club_id = c.club_id ) );
As expected, those two perform almost the same. Query plan results in table scans, the planner doesn't find a way to use the indexes here.
WITH RECURSIVE two AS ( SELECT 1::int AS level , stud_id FROM student_club sc1 WHERE sc1.club_id = 30 UNION SELECT two.level + 1 AS level , sc2.stud_id FROM student_club sc2 JOIN two USING (stud_id) WHERE sc2.club_id = 50 AND two.level = 1 ) SELECT s.stud_id, s.student FROM student s JOIN two USING (studid) WHERE two.level > 1;
Fancy SQL, decent performance for a CTE. Very exotic query plan.
WITH sc AS ( SELECT stud_id FROM student_club WHERE club_id IN (30,50) GROUP BY stud_id HAVING COUNT(*) > 1 ) SELECT s.* FROM student s JOIN sc USING (stud_id);
CTE variant of query 2). Surprisingly, it can result in a slightly different query plan with the exact same data. I found a sequential scan on student
, where the subquery-variant used the index.
Another late addition ypercube. It is positively amazing, how many ways there are.
SELECT s.stud_id, s.student FROM student s JOIN student_club sc USING (stud_id) WHERE sc.club_id = 10 -- member in 1st club ... AND NOT EXISTS ( SELECT * FROM (SELECT 14 AS club_id) AS c -- can't be excluded for missing the 2nd WHERE NOT EXISTS ( SELECT * FROM student_club AS d WHERE d.stud_id = sc.stud_id AND d.club_id = c.club_id ) );
ypercube's 11) is actually just the mind-twisting reverse approach of this simpler variant, that was also still missing. Performs almost as fast as the top cats.
SELECT s.* FROM student s JOIN student_club x USING (stud_id) WHERE sc.club_id = 10 -- member in 1st club ... AND EXISTS ( -- ... and membership in 2nd exists SELECT * FROM student_club AS y WHERE y.stud_id = s.stud_id AND y.club_id = 14 );
Hard to believe, but here's another, genuinely new variant. I see potential for more than two memberships, but it also ranks among the top cats with just two.
SELECT s.* FROM student AS s WHERE EXISTS ( SELECT * FROM student_club AS x JOIN student_club AS y USING (stud_id) WHERE x.stud_id = s.stud_id AND x.club_id = 14 AND y.club_id = 10 );
In other words: varying number of filters. This question asked for exactly two club memberships. But many use cases have to prepare for a varying number. See:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With