What is the best way to fill in the lower triangle of a numpy array with zeros in place so that I don't have to do the following:
a=np.random.random((5,5))
a = np.triu(a)
since np.triu returns a copy, not a view. Preferable this would require no list indexing as well since I am working with large arrays.
Digging into the internals of triu
you'll find that it just multiplies the input by the output of tri
.
So you can just multiply the array in-place by the output of tri
:
>>> a = np.random.random((5, 5))
>>> a *= np.tri(*a.shape)
>>> a
array([[ 0.46026582, 0. , 0. , 0. , 0. ],
[ 0.76234296, 0.5298908 , 0. , 0. , 0. ],
[ 0.08797149, 0.14881991, 0.9302515 , 0. , 0. ],
[ 0.54794779, 0.36896506, 0.92901552, 0.73747726, 0. ],
[ 0.62917827, 0.61674542, 0.44999905, 0.80970863, 0.41860336]])
Like triu
, this still creates a second array (the output of tri
), but at least it performs the operation itself in-place. The splat is a bit of a shortcut; consider basing your function on the full version of triu
for something robust. But note that you can still specify a diagonal:
>>> a = np.random.random((5, 5))
>>> a *= np.tri(*a.shape, k=2)
>>> a
array([[ 0.25473126, 0.70156073, 0.0973933 , 0. , 0. ],
[ 0.32859487, 0.58188318, 0.95288351, 0.85735005, 0. ],
[ 0.52591784, 0.75030515, 0.82458369, 0.55184033, 0.01341398],
[ 0.90862183, 0.33983192, 0.46321589, 0.21080121, 0.31641934],
[ 0.32322392, 0.25091433, 0.03980317, 0.29448128, 0.92288577]])
I now see that the question title and body describe opposite behaviors. Just in case, here's how you can fill the lower triangle with zeros. This requires you to specify the -1
diagonal:
>>> a = np.random.random((5, 5))
>>> a *= 1 - np.tri(*a.shape, k=-1)
>>> a
array([[0.6357091 , 0.33589809, 0.744803 , 0.55254798, 0.38021111],
[0. , 0.87316263, 0.98047459, 0.00881754, 0.44115527],
[0. , 0. , 0.51317289, 0.16630385, 0.1470729 ],
[0. , 0. , 0. , 0.9239731 , 0.11928557],
[0. , 0. , 0. , 0. , 0.1840326 ]])
If speed and memory use are still a limitation and Cython is available, a short Cython function will do what you want. Here's a working version designed for a C-contiguous array with double precision values.
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef make_lower_triangular(double[:,:] A, int k):
""" Set all the entries of array A that lie above
diagonal k to 0. """
cdef int i, j
for i in range(min(A.shape[0], A.shape[0] - k)):
for j in range(max(0, i+k+1), A.shape[1]):
A[i,j] = 0.
This should be significantly faster than any version that involves multiplying by a large temporary array.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With