Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to extract variable weight from spark pipeline logistic model?

I am currently trying to learn Spark Pipeline (Spark 1.6.0). I imported datasets (train and test) as oas.sql.DataFrame objects. After executing the following codes, the produced model is a oas.ml.tuning.CrossValidatorModel.

You can use model.transform (test) to predict based on the test data in Spark. However, I would like to compare the weights that model used to predict with that from R. How to extract the weights of the predictors and intercept (if any) of model? The Scala codes are:

import sqlContext.implicits._
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.SparkContext
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}

val conTrain = sc.textFile("AbsolutePath2Train.txt")
val conTest = sc.textFile("AbsolutePath2Test.txt")

// parse text and convert to sql.DataFrame
val train = conTrain.map { line =>
val parts = line.split(",")
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(" +").map(_.toDouble)))
}.toDF()
val test =conTest.map{ line =>
val parts = line.split(",")
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(" +").map(_.toDouble)))
}.toDF()

// set parameter space and evaluation method
val lr = new LogisticRegression().setMaxIter(400)
val pipeline = new Pipeline().setStages(Array(lr))
val paramGrid = new ParamGridBuilder().addGrid(lr.regParam, Array(0.1, 0.01)).addGrid(lr.fitIntercept).addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)).build()
val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNumFolds(2)

// fit logistic model
val model = cv.fit(train)

// If you want to predict with test
val pred = model.transform(test)

My spark environment is not accessible. Thus, these codes are retyped and rechecked. I hope they are correct. So far, I have tried searching on webs, asking others. About my coding, welcome suggestions, and criticisms.

like image 245
Jazzy Avatar asked Dec 01 '25 23:12

Jazzy


1 Answers

// set parameter space and evaluation method
val lr = new LogisticRegression().setMaxIter(400)
val pipeline = new Pipeline().setStages(Array(lr))
val paramGrid = new ParamGridBuilder().addGrid(lr.regParam, Array(0.1, 0.01)).addGrid(lr.fitIntercept).addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)).build()
val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator).setEstimatorParamMaps(paramGrid).setNumFolds(2)
// you can print lr model coefficients as below
val model = cv.bestModel.asInstanceOf[PipelineModel]
val lrModel = model.stages(0).asInstanceOf[LogisticRegressionModel]
println(s"LR Model coefficients:\n${lrModel.coefficients.toArray.mkString("\n")}")

Two steps:

  1. Get the best pipeline from cross validation result.
  2. Get the LR Model from the best pipeline. It's the first stage in your code example.
like image 68
Julian Qian Avatar answered Dec 03 '25 18:12

Julian Qian