I am writing an app in Swift which employs the Scandit barcode scanning SDK. The SDK permits you to access camera frames directly and provides the frame as a CMSampleBuffer. They provide documentation in Objective-C, which I am having trouble getting to work in Swift. I do not know if the problem is in porting the code, or if there is something amiss with the sample buffer itself, perhaps due to a change in Core Media since their documentation was generated.
Their API exposes the frame as follows (Objective-C):
interface YourViewController () <SBSProcessFrameDelegate>
...
- (void)barcodePicker:(SBSBarcodePicker*)barcodePicker
didProcessFrame:(CMSampleBufferRef)frame
session:(SBSScanSession*)session {
// Process the frame yourself.
}
Building from several answers here on SO, I attempt to process the frame with:
let imageBuffer = CMSampleBufferGetImageBuffer(frame)!
CVPixelBufferLockBaseAddress(imageBuffer, 0)
let baseAddress = CVPixelBufferGetBaseAddress(imageBuffer)
let width = CVPixelBufferGetWidth(imageBuffer)
let height = CVPixelBufferGetHeight(imageBuffer)
let bytesPerRow = CVPixelBufferGetBytesPerRow(imageBuffer)
let colorSpace = CGColorSpaceCreateDeviceRGB()
let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.NoneSkipFirst.rawValue | CGBitmapInfo.ByteOrder32Little.rawValue)
let context = CGBitmapContextCreate(baseAddress, width, height, 8, bytesPerRow, colorSpace, bitmapInfo.rawValue)
let quartzImage = CGBitmapContextCreateImage(context)
CVPixelBufferUnlockBaseAddress(imageBuffer,0)
let image = UIImage(CGImage: quartzImage!)
But, this fails with:
Jan 29 09:01:30 Scandit[1308] <Error>: CGBitmapContextCreate: invalid data bytes/row: should be at least 7680 for 8 integer bits/component, 3 components, kCGImageAlphaNoneSkipFirst.
Jan 29 09:01:30 Scandit[1308] <Error>: CGBitmapContextCreateImage: invalid context 0x0. If you want to see the backtrace, please set CG_CONTEXT_SHOW_BACKTRACE environmental variable.
fatal error: unexpectedly found nil while unwrapping an Optional value
The fatal error is in attempting to resolve a UIImage from quartzImage
.
The width, height, and bytesPerRow are (at the base address):
Width: 1920
Height: 1080
Bytes per row: 2904
As passed from the delegate, here is what the buffer contains according to CMSampleBufferGetFormatDescription(frame)
:
Optional(<CMVideoFormatDescription 0x1447dafa0 [0x1a1864b68]> {
mediaType:'vide'
mediaSubType:'420f'
mediaSpecific: {
codecType: '420f' dimensions: 1920 x 1080
}
extensions: {<CFBasicHash 0x1447dba10 [0x1a1864b68]>{type = immutable dict, count = 6,
entries =>
0 : <CFString 0x19d28b678 [0x1a1864b68]>{contents = "CVImageBufferYCbCrMatrix"} = <CFString 0x19d28b6b8 [0x1a1864b68]>{contents = "ITU_R_601_4"}
1 : <CFString 0x19d28b7d8 [0x1a1864b68]>{contents = "CVImageBufferTransferFunction"} = <CFString 0x19d28b698 [0x1a1864b68]>{contents = "ITU_R_709_2"}
2 : <CFString 0x19d2b65c0 [0x1a1864b68]>{contents = "CVBytesPerRow"} = <CFNumber 0xb00000000000b582 [0x1a1864b68]>{value = +2904, type = kCFNumberSInt32Type}
3 : <CFString 0x19d2b6640 [0x1a1864b68]>{contents = "Version"} = <CFNumber 0xb000000000000022 [0x1a1864b68]>{value = +2, type = kCFNumberSInt32Type}
5 : <CFString 0x19d28b758 [0x1a1864b68]>{contents = "CVImageBufferColorPrimaries"} = <CFString 0x19d28b698 [0x1a1864b68]>{contents = "ITU_R_709_2"}
6 : <CFString 0x19d28b818 [0x1a1864b68]>{contents = "CVImageBufferChromaLocationTopField"} = <CFString 0x19d28b878 [0x1a1864b68]>{contents = "Center"}
}
}
})
I realize there may be multiple "planes" here, but even with:
let pixelBufferBytesPerRow0 = CVPixelBufferGetBytesPerRowOfPlane(imageBuffer, 0)
let pixelBufferBytesPerRow1 = CVPixelBufferGetBytesPerRowOfPlane(imageBuffer, 1)
Gives:
Pixel buffer bytes per row (Plane 0): 1920
Pixel buffer bytes per row (Plane 1): 1920
I don't understand that discrepancy.
I also attempted to process each pixel individually as it is clear the buffer contains some manner of YCbCr, but it fails every way I have tried. The Scandit API suggest (Objective-C):
// Get the buffer info for the YCbCrBiPlanar format.
void *baseAddress = CVPixelBufferGetBaseAddress(imageBuffer);
CVPlanarPixelBufferInfo_YCbCrBiPlanar *bufferInfo = (CVPlanarPixelBufferInfo_YCbCrBiPlanar *)baseAddress;
But, I cannot find a Swift implementation that permits access to the buffer info using CVPlanarPixelBufferInfo... everything I have tried fails, so I am unable to determine the offset for "Y", "Cr", etc.
How can I access the pixel data in the buffer? Is this a problem with the CMSampleBuffer the SDK is passing, a problem with iOS9, or both?
Working from Codo's "hints" and integrating with Objective-C code in the Scandit documentation, I worked out a solution in Swift. Though I accepted Codo's answer as it helped tremendously, I'm also answering my own question in the hopes that a complete solution would help someone in the future:
let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)!
CVPixelBufferLockBaseAddress(pixelBuffer, 0)
let lumaBaseAddress = CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 0)
let chromaBaseAddress = CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 1)
let width = CVPixelBufferGetWidth(pixelBuffer)
let height = CVPixelBufferGetHeight(pixelBuffer)
let lumaBytesPerRow = CVPixelBufferGetBytesPerRowOfPlane(pixelBuffer, 0)
let chromaBytesPerRow = CVPixelBufferGetBytesPerRowOfPlane(pixelBuffer, 1)
let lumaBuffer = UnsafeMutablePointer<UInt8>(lumaBaseAddress)
let chromaBuffer = UnsafeMutablePointer<UInt8>(chromaBaseAddress)
var rgbaImage = [UInt8](count: 4*width*height, repeatedValue: 0)
for var x = 0; x < width; x++ {
for var y = 0; y < height; y++ {
let lumaIndex = x+y*lumaBytesPerRow
let chromaIndex = (y/2)*chromaBytesPerRow+(x/2)*2
let yp = lumaBuffer[lumaIndex]
let cb = chromaBuffer[chromaIndex]
let cr = chromaBuffer[chromaIndex+1]
let ri = Double(yp) + 1.402 * (Double(cr) - 128)
let gi = Double(yp) - 0.34414 * (Double(cb) - 128) - 0.71414 * (Double(cr) - 128)
let bi = Double(yp) + 1.772 * (Double(cb) - 128)
let r = UInt8(min(max(ri,0), 255))
let g = UInt8(min(max(gi,0), 255))
let b = UInt8(min(max(bi,0), 255))
rgbaImage[(x + y * width) * 4] = b
rgbaImage[(x + y * width) * 4 + 1] = g
rgbaImage[(x + y * width) * 4 + 2] = r
rgbaImage[(x + y * width) * 4 + 3] = 255
}
}
let colorSpace = CGColorSpaceCreateDeviceRGB()
let dataProvider: CGDataProviderRef = CGDataProviderCreateWithData(nil, rgbaImage, 4 * width * height, nil)!
let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.NoneSkipFirst.rawValue | CGBitmapInfo.ByteOrder32Little.rawValue)
let cgImage: CGImageRef = CGImageCreate(width, height, 8, 32, width * 4, colorSpace!, bitmapInfo, dataProvider, nil, true, CGColorRenderingIntent.RenderingIntentDefault)!
let image: UIImage = UIImage(CGImage: cgImage)
CVPixelBufferUnlockBaseAddress(pixelBuffer,0)
Despite iterating through the entire 8.3MP image, the code executes very quickly. I freely admit that I don't have a deep understanding of Core Media frameworks, but I believe this means the code is executing on the GPU. But, I would appreciate any comments on the code to make it more efficient, or to improve the "Swiftness" as I am completely an amateur.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With