reference: Pandas DataFrame: remove unwanted parts from strings in a column
In reference to an answer provided in the link above. I've researched some regular expressions and I plan to dive deeper but in the meantime I could use some help.
My dataframe is something like:
df:
c_contofficeID
0 0109
1 0109
2 3434
3 123434
4 1255N9
5 0109
6 123434
7 55N9
8 5599
9 0109
Psuedo Code
If the first two characters are a 12 remove them. Or alternatively, add a 12 to the characters that don't have a 12 in the first two characters.
Result would look like:
c_contofficeID
0 0109
1 0109
2 3434
3 3434
4 55N9
5 0109
6 3434
7 55N9
8 5599
9 0109
I'm using the answer from the link above as a starting point:
df['contofficeID'].replace(regex=True,inplace=True,to_replace=r'\D',value=r'')
I've tried the following:
Attempt 1)
df['contofficeID'].replace(regex=True,inplace=True,to_replace=r'[1][2]',value=r'')
Attempt 2)
df['contofficeID'].replace(regex=True,inplace=True,to_replace=r'$[1][2]',value=r'')
Attempt 3)
df['contofficeID'].replace(regex=True,inplace=True,to_replace=r'?[1]?[2]',value=r'')
new answers
per comment from @Addison
# '12(?=.{4}$)' makes sure we have a 12 followed by exactly 4 something elses
df.c_contofficeID.str.replace('^12(?=.{4}$)', '')
If ID's must have four characters, it's simpler to
df.c_contofficeID.str[-4:]
old answer
use str.replace
df.c_contofficeID.str.replace('^12', '').to_frame()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With