I have a dataframe df
and it looks like this:
id Type agent_id created_at
0 44525 Stunning 6 bedroom villa in New Delhi 184 2018-03-09
1 44859 Villa for sale in Amritsar 182 2017-02-19
2 45465 House in Faridabad 154 2017-04-17
3 50685 5 Hectre land near New Delhi 113 2017-09-01
4 130728 Duplex in Mumbai 157 2017-02-07
5 130856 Large plot with fantastic views in Mumbai 137 2018-01-16
6 130857 Modern Design Penthouse in Bangalore 199 2017-03-24
I've this tabular data and I'm trying to clean this data by extracting keywords from the column and hence create a new dataframe with new columns.
Apartment = ['apartment', 'penthouse', 'duplex']
House = ['house', 'villa', 'country estate']
Plot = ['plot', 'land']
Location = ['New Delhi','Mumbai','Bangalore','Amritsar']
So the desired dataframe shoul look like this:
id Type Location agent_id created_at
0 44525 House New Delhi 184 2018-03-09
1 44859 House Amritsar 182 2017-02-19
2 45465 House Faridabad 154 2017-04-17
3 50685 Plot New Delhi 113 2017-09-01
4 130728 Apartment Mumbai 157 2017-02-07
5 130856 Plot Mumbai 137 2018-01-16
6 130857 Apartment Bangalore 199 2017-03-24
So till now i've tried this:
import pandas as pd
df = pd.read_csv('test_data.csv')
#i can extract these keywords one by one by using for loops but how
#can i do this work in pandas with minimum possible line of code.
for index, values in df.type.iteritems():
for i in Apartment:
if i in values:
print(i)
df_new = pd. Dataframe(df['id'])
Can someone tell me how to solve this?
We can loop through the range of the column and calculate the substring for each value in the column. Example 2: In this example we'll use str. slice() . Example 3: We can also use the str accessor in a different way by using square brackets.
You can extract a column of pandas DataFrame based on another value by using the DataFrame. query() method. The query() is used to query the columns of a DataFrame with a boolean expression. The blow example returns a Courses column where the Fee column value matches with 25000.
First create Location
column by str.extract
with |
for regex OR
:
pat = '|'.join(r"\b{}\b".format(x) for x in Location)
df['Location'] = df['Type'].str.extract('('+ pat + ')', expand=False)
Then create dictionary from another list
s, swap keys with values and in loop set value by mask with str.contains
and parameter case=False
:
d = {'Apartment' : Apartment,
'House' : House,
'Plot' : Plot}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
for k, v in d1.items():
df.loc[df['Type'].str.contains(k, case=False), 'Type'] = v
print (df)
id Type agent_id created_at Location
0 44525 House 184 2018-03-09 New Delhi
1 44859 House 182 2017-02-19 Amritsar
2 45465 House 154 2017-04-17 NaN
3 50685 Plot 113 2017-09-01 New Delhi
4 130728 Apartment 157 2017-02-07 Mumbai
5 130856 Plot 137 2018-01-16 Mumbai
6 130857 Apartment 199 2017-03-24 Bangalore
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With