I have a list of the Class A, that includes a List itself.
public class A {
public double val;
public String id;
public List<String> names = new ArrayList<String>();
public A(double v, String ID, String name)
{
val = v;
id = ID;
names.add(name);
}
static public List<A> createAnExample()
{
List<A> items = new ArrayList<A>();
items.add(new A(8.0,"x1","y11"));
items.add(new A(12.0, "x2", "y21"));
items.add(new A(24.0,"x3","y31"));
items.get(0).names.add("y12");
items.get(1).names.add("y11");
items.get(1).names.add("y31");
items.get(2).names.add("y11");
items.get(2).names.add("y32");
items.get(2).names.add("y33");
return items;
}
The aim is to sum over average val per id over the List. I added the code in Main function by using some Java 8 stream. My question is how can I rewrite it in a more elegant way without using the second Array and the for loop.
static public void main(String[] args) {
List<A> items = createAnExample();
List<A> items2 = new ArrayList<A>();
for (int i = 0; i < items.size(); i++) {
List<String> names = items.get(i).names;
double v = items.get(i).val / names.size();
String itemid = items.get(i).id;
for (String n : names) {
A item = new A(v, itemid, n);
items2.add(item);
}
}
Map<String, Double> x = items2.stream().collect(Collectors.groupingBy(item ->
item.names.isEmpty() ? "NULL" : item.names.get(0), Collectors.summingDouble(item -> item.val)));
for (Map.Entry entry : x.entrySet())
System.out.println(entry.getKey() + " --> " + entry.getValue());
}
You can do it with flatMap
:
x = items.stream()
.flatMap(a -> a.names.stream()
.map(n -> new AbstractMap.SimpleEntry<>(n, a.val / a.names.size()))
).collect(groupingBy(
Map.Entry::getKey, summingDouble(Map.Entry::getValue)
));
If you find yourself dealing with problems like these often, consider a static method to create a Map.Entry
:
static<K,V> Map.Entry<K,V> entry(K k, V v) {
return new AbstractMap.SimpleImmutableEntry<>(k,v);
}
Then you would have a less verbose .map(n -> entry(n, a.val/a.names.size()))
In my free StreamEx library which extends standard Stream API there are special operations which help building such complex maps. Using the StreamEx your problem can be solved like this:
Map<String, Double> x = StreamEx.of(createAnExample())
.mapToEntry(item -> item.names, item -> item.val / item.names.size())
.flatMapKeys(List::stream)
.grouping(Collectors.summingDouble(v -> v));
Here mapToEntry
creates stream of map entries (so-called EntryStream
) where keys are lists of names and values are averaged vals. Next we use flatMapKeys
to flatten the keys leaving values as is (so we have stream of Entry<String, Double>
). Finally we group them together summing the values for repeating keys.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With