I need some help with a concise and first of all efficient formulation in pandas of the following operation:
Given a data frame of the format
id a b c d
1 0 -1 1 1
42 0 1 0 0
128 1 -1 0 1
Construct a data frame of the format:
id one_entries
1 "c d"
42 "b"
128 "a d"
That is, the column "one_entries" contains the concatenated names of the columns for which the entry in the original frame is 1.
Here's one way using boolean rule and applying lambda func.
In [58]: df
Out[58]:
id a b c d
0 1 0 -1 1 1
1 42 0 1 0 0
2 128 1 -1 0 1
In [59]: cols = list('abcd')
In [60]: (df[cols] > 0).apply(lambda x: ' '.join(x[x].index), axis=1)
Out[60]:
0 c d
1 b
2 a d
dtype: object
You can assign the result to df['one_entries'] =
Details of apply func.
Take first row.
In [83]: x = df[cols].ix[0] > 0
In [84]: x
Out[84]:
a False
b False
c True
d True
Name: 0, dtype: bool
x
gives you Boolean values for the row, values greater than zero. x[x]
will return only True
. Essentially a series with column names as index.
In [85]: x[x]
Out[85]:
c True
d True
Name: 0, dtype: bool
x[x].index
gives you the column names.
In [86]: x[x].index
Out[86]: Index([u'c', u'd'], dtype='object')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With