Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to efficiently compute a rolling unique count in a pandas time series?

I have a time series of people visiting a building. Each person has a unique ID. For every record in the time series, I want to know the number of unique people visiting the building in the last 365 days (i.e. a rolling unique count with a window of 365 days).

pandas does not seem to have a built-in method for this calculation. The calculation becomes computationally intensive when there are a large number of unique visitors and/or a large window. (The actual data is larger than this example.)

Is there a better way to calculate than what I've done below? I'm not sure why the fast method I made, windowed_nunique (under "Speed test 3"), is off by 1.

Thanks for any help!

Related links:

  • Source Jupyter Notebook: https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc
  • Related pandas issue: https://github.com/pandas-dev/pandas/issues/14336

Initialization

In [1]:

# Import libraries.
import pandas as pd
import numba
import numpy as np

In [2]:

# Create data of people visiting a building.

np.random.seed(seed=0)
dates = pd.date_range(start='2010-01-01', end='2015-01-01', freq='D')
window = 365 # days
num_pids = 100
probs = np.linspace(start=0.001, stop=0.1, num=num_pids)

df = pd\
    .DataFrame(
        data=[(date, pid)
              for (pid, prob) in zip(range(num_pids), probs)
              for date in np.compress(np.random.binomial(n=1, p=prob, size=len(dates)), dates)],
        columns=['Date', 'PersonId'])\
    .sort_values(by='Date')\
    .reset_index(drop=True)

print("Created data of people visiting a building:")
df.head() # 9181 rows × 2 columns

Out[2]:

Created data of people visiting a building:

|   | Date       | PersonId | 
|---|------------|----------| 
| 0 | 2010-01-01 | 76       | 
| 1 | 2010-01-01 | 63       | 
| 2 | 2010-01-01 | 89       | 
| 3 | 2010-01-01 | 81       | 
| 4 | 2010-01-01 | 7        | 

Speed reference

In [3]:

%%timeit
# This counts the number of people visiting the building, not the number of unique people.
# Provided as a speed reference.
df.rolling(window='{:d}D'.format(window), on='Date').count()

3.32 ms ± 124 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Speed test 1

In [4]:

%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())

2.42 s ± 282 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [5]:

# Save results as a reference to check calculation accuracy.
ref = df.rolling(window='{:d}D'.format(window), on='Date').apply(lambda arr: pd.Series(arr).nunique())['PersonId'].values

Speed test 2

In [6]:

# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def nunique(arr):
    return len(set(arr))

In [7]:

%%timeit
df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)

430 ms ± 31.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [8]:

# Check accuracy of results.
test = df.rolling(window='{:d}D'.format(window), on='Date').apply(nunique)['PersonId'].values
assert all(ref == test)

Speed test 3

In [9]:

# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique(dates, pids, window):
    r"""Track number of unique persons in window,
    reading through arrays only once.

    Args:
        dates (numpy.ndarray): Array of dates as number of days since epoch.
        pids (numpy.ndarray): Array of integer person identifiers.
        window (int): Width of window in units of difference of `dates`.

    Returns:
        ucts (numpy.ndarray): Array of unique counts.

    Raises:
        AssertionError: Raised if `len(dates) != len(pids)`

    Notes:
        * May be off by 1 compared to `pandas.core.window.Rolling`
            with a time series alias offset.

    """

    # Check arguments.
    assert dates.shape == pids.shape

    # Initialize counters.
    idx_min = 0
    idx_max = dates.shape[0]
    date_min = dates[idx_min]
    pid_min = pids[idx_min]
    pid_max = np.max(pids)
    pid_cts = np.zeros(pid_max, dtype=np.int64)
    pid_cts[pid_min] = 1
    uct = 1
    ucts = np.zeros(idx_max, dtype=np.int64)
    ucts[idx_min] = uct
    idx = 1

    # For each (date, person)...
    while idx < idx_max:

        # If person count went from 0 to 1, increment unique person count.
        date = dates[idx]
        pid = pids[idx]
        pid_cts[pid] += 1
        if pid_cts[pid] == 1:
            uct += 1

        # For past dates outside of window...
        while (date - date_min) > window:

            # If person count went from 1 to 0, decrement unique person count.
            pid_cts[pid_min] -= 1
            if pid_cts[pid_min] == 0:
                uct -= 1
            idx_min += 1
            date_min = dates[idx_min]
            pid_min = pids[idx_min]

        # Record unique person count.
        ucts[idx] = uct
        idx += 1

    return ucts

In [10]:

# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)

In [11]:

%%timeit
windowed_nunique(
    dates=df['DateEpoch'].values,
    pids=df['PersonId'].values,
    window=window)

107 µs ± 63.5 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [12]:

# Check accuracy of results.
test = windowed_nunique(
    dates=df['DateEpoch'].values,
    pids=df['PersonId'].values,
    window=window)
# Note: Method may be off by 1.
assert all(np.isclose(ref, np.asarray(test), atol=1))

In [13]:

# Show where the calculation doesn't match.
print("Where reference ('ref') calculation of number of unique people doesn't match 'test':")
df['ref'] = ref
df['test'] = test
df.loc[df['ref'] != df['test']].head() # 9044 rows × 5 columns

Out[13]:

Where reference ('ref') calculation of number of unique people doesn't match 'test':

|    | Date       | PersonId | DateEpoch | ref  | test | 
|----|------------|----------|-----------|------|------| 
| 78 | 2010-01-19 | 99       | 14628     | 56.0 | 55   | 
| 79 | 2010-01-19 | 96       | 14628     | 56.0 | 55   | 
| 80 | 2010-01-19 | 88       | 14628     | 56.0 | 55   | 
| 81 | 2010-01-20 | 94       | 14629     | 56.0 | 55   | 
| 82 | 2010-01-20 | 48       | 14629     | 57.0 | 56   | 
like image 632
Samuel Harrold Avatar asked Sep 28 '17 13:09

Samuel Harrold


People also ask

How do you count unique values in a pandas series?

You can use the nunique() function to count the number of unique values in a pandas DataFrame.

How do you take rolling in pandas?

rolling() function provides the feature of rolling window calculations. The concept of rolling window calculation is most primarily used in signal processing and time-series data. In very simple words we take a window size of k at a time and perform some desired mathematical operation on it.

What pandas method displays how many of each unique value are present in a column?

value_counts() Method: Count Unique Occurrences of Values in a Column. In pandas, for a column in a DataFrame, we can use the value_counts() method to easily count the unique occurences of values.

How do you count how many times a panda appears?

To count the number of occurrences in e.g. a column in a dataframe you can use Pandas value_counts() method. For example, if you type df['condition']. value_counts() you will get the frequency of each unique value in the column “condition”.


1 Answers

I had 2 errors in the fast method windowed_nunique, now corrected in windowed_nunique_corrected below:

  1. The size of the array for memoizing the number of unique counts for each person ID within the window, pid_cts, was too small.
  2. Because the leading and trailing edges of the window include integer days, date_min should be updated when (date - date_min + 1) > window.

Related links:

  • Source Jupyter Notebook updated with solution: https://gist.github.com/stharrold/17589e6809d249942debe3a5c43d38cc

In [14]:

# Define a custom function and implement a just-in-time compiler.
@numba.jit(nopython=True)
def windowed_nunique_corrected(dates, pids, window):
    r"""Track number of unique persons in window,
    reading through arrays only once.

    Args:
        dates (numpy.ndarray): Array of dates as number of days since epoch.
        pids (numpy.ndarray): Array of integer person identifiers.
            Required: min(pids) >= 0
        window (int): Width of window in units of difference of `dates`.
            Required: window >= 1

    Returns:
        ucts (numpy.ndarray): Array of unique counts.

    Raises:
        AssertionError: Raised if not...
            * len(dates) == len(pids)
            * min(pids) >= 0
            * window >= 1

    Notes:
        * Matches `pandas.core.window.Rolling`
            with a time series alias offset.

    """

    # Check arguments.
    assert len(dates) == len(pids)
    assert np.min(pids) >= 0
    assert window >= 1

    # Initialize counters.
    idx_min = 0
    idx_max = dates.shape[0]
    date_min = dates[idx_min]
    pid_min = pids[idx_min]
    pid_max = np.max(pids) + 1
    pid_cts = np.zeros(pid_max, dtype=np.int64)
    pid_cts[pid_min] = 1
    uct = 1
    ucts = np.zeros(idx_max, dtype=np.int64)
    ucts[idx_min] = uct
    idx = 1

    # For each (date, person)...
    while idx < idx_max:

        # Lookup date, person.
        date = dates[idx]
        pid = pids[idx]

        # If person count went from 0 to 1, increment unique person count.
        pid_cts[pid] += 1
        if pid_cts[pid] == 1:
            uct += 1

        # For past dates outside of window...
        # Note: If window=3, it includes day0,day1,day2.
        while (date - date_min + 1) > window:

            # If person count went from 1 to 0, decrement unique person count.
            pid_cts[pid_min] -= 1
            if pid_cts[pid_min] == 0:
                uct -= 1
            idx_min += 1
            date_min = dates[idx_min]
            pid_min = pids[idx_min]

        # Record unique person count.
        ucts[idx] = uct
        idx += 1

    return ucts

In [15]:

# Cast dates to integers.
df['DateEpoch'] = (df['Date'] - pd.to_datetime('1970-01-01'))/pd.to_timedelta(1, unit='D')
df['DateEpoch'] = df['DateEpoch'].astype(int)

In [16]:

%%timeit
windowed_nunique_corrected(
    dates=df['DateEpoch'].values,
    pids=df['PersonId'].values,
    window=window)

98.8 µs ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [17]:

# Check accuracy of results.
test = windowed_nunique_corrected(
    dates=df['DateEpoch'].values,
    pids=df['PersonId'].values,
    window=window)
assert all(ref == test)
like image 67
Samuel Harrold Avatar answered Oct 14 '22 13:10

Samuel Harrold