I have a = array([1, 2, 3, 4, 5])
and b = array([10, 20, 30, 40, 50])
. I want:
array([[ -9, -19, -29, -39, -49],
[ -8, -18, -28, -38, -48],
[ -7, -17, -27, -37, -47],
[ -6, -16, -26, -36, -46],
[ -5, -15, -25, -35, -45]])
What's the most efficient way to do this? I have
np.transpose([a]) - np.tile(b, (len(a), 1))
However I wonder if there's a more efficient way than this if a
is very large, which wouldn't require copying b
so much (or vice versa).
Some NumPy functions, like np.subtract
, np.add
, np.multiply
, np.divide
, np.logical_and
, np.bitwise_and
, etc. have an "outer" method which can be used to create the equivalent of "multiplication tables":
In [76]: np.subtract.outer(a, b)
Out[76]:
array([[ -9, -19, -29, -39, -49],
[ -8, -18, -28, -38, -48],
[ -7, -17, -27, -37, -47],
[ -6, -16, -26, -36, -46],
[ -5, -15, -25, -35, -45]])
or, using broadcasting:
In [96]: a[:, None] - b
Out[96]:
array([[ -9, -19, -29, -39, -49],
[ -8, -18, -28, -38, -48],
[ -7, -17, -27, -37, -47],
[ -6, -16, -26, -36, -46],
[ -5, -15, -25, -35, -45]])
The performance of the two is about the same:
In [98]: a = np.tile(a, 1000)
In [99]: b = np.tile(b, 1000)
In [100]: %timeit a[:, None] - b
10 loops, best of 3: 88.3 ms per loop
In [101]: %timeit np.subtract.outer(a, b)
10 loops, best of 3: 87.8 ms per loop
In [102]: %timeit np.transpose([a]) - np.tile(b, (len(a), 1))
10 loops, best of 3: 120 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With