Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to do Onehotencoding in Sklearn Pipeline

I am trying to oneHotEncode the categorical variables of my Pandas dataframe, which includes both categorical and continues variables. I realise this can be done easily with the pandas .get_dummies() function, but I need to use a pipeline so I can generate a PMML-file later on.

This is the code to create a mapper. The categorical variables I would like to encode are stored in a list called 'dummies'.

from sklearn_pandas import DataFrameMapper
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder

mapper = DataFrameMapper(
    [(d, LabelEncoder()) for d in dummies] +
    [(d, OneHotEncoder()) for d in dummies]
)

And this is the code to create a pipeline, including the mapper and linear regression.

from sklearn2pmml import PMMLPipeline
from sklearn.linear_model import LinearRegression

lm = PMMLPipeline([("mapper", mapper),
                   ("regressor", LinearRegression())])

When I now try to fit (with 'features' being a dataframe, and 'targets' a series), it gives an error 'could not convert string to float'.

lm.fit(features, targets)

Anyone who can help me out? I am desperate for working pipelines including the preprocessing of data... Thanks in advance!

like image 237
Desiré De Waele Avatar asked Feb 13 '17 12:02

Desiré De Waele


People also ask

What is OneHotEncoder in Sklearn?

OneHotEncoder. Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature.


1 Answers

OneHotEncoder doesn't support string features, and with [(d, OneHotEncoder()) for d in dummies] you are applying it to all dummies columns. Use LabelBinarizer instead:

mapper = DataFrameMapper(
    [(d, LabelBinarizer()) for d in dummies]
)

An alternative would be to use the LabelEncoder with a second OneHotEncoder step.

mapper = DataFrameMapper(
    [(d, LabelEncoder()) for d in dummies]
)

lm = PMMLPipeline([("mapper", mapper),
                   ("onehot", OneHotEncoder()),
                   ("regressor", LinearRegression())])
like image 119
dukebody Avatar answered Sep 28 '22 16:09

dukebody