I am trying to detect lines in parking as shown below.
What I hope to get is the clear lines and (x,y) position in the crossed line. However, the result is not very promising.
I guess it is due to two main reasons:
Some lines are very broken or missing. Even human eyes can clearly identify them. Even though HoughLine can help to connect some missing lines, since HoughLine sometimes would connect unnecessary lines together, I 'd rather to do it manually.
There are some repeated lines.
The general pipeline for the work is shown as below:
import cv2
import numpy as np
import matplotlib
from matplotlib.pyplot import imshow
from matplotlib import pyplot as plt
# white color mask
img = cv2.imread(filein)
#converted = convert_hls(img)
image = cv2.cvtColor(img,cv2.COLOR_BGR2HLS)
lower = np.uint8([0, 200, 0])
upper = np.uint8([255, 255, 255])
white_mask = cv2.inRange(image, lower, upper)
# yellow color mask
lower = np.uint8([10, 0, 100])
upper = np.uint8([40, 255, 255])
yellow_mask = cv2.inRange(image, lower, upper)
# combine the mask
mask = cv2.bitwise_or(white_mask, yellow_mask)
result = img.copy()
cv2.imshow("mask",mask)
height,width = mask.shape
skel = np.zeros([height,width],dtype=np.uint8) #[height,width,3]
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
temp_nonzero = np.count_nonzero(mask)
while(np.count_nonzero(mask) != 0 ):
eroded = cv2.erode(mask,kernel)
cv2.imshow("eroded",eroded)
temp = cv2.dilate(eroded,kernel)
cv2.imshow("dilate",temp)
temp = cv2.subtract(mask,temp)
skel = cv2.bitwise_or(skel,temp)
mask = eroded.copy()
cv2.imshow("skel",skel)
#cv2.waitKey(0)
edges = cv2.Canny(skel, 50, 150)
cv2.imshow("edges",edges)
lines = cv2.HoughLinesP(edges,1,np.pi/180,40,minLineLength=30,maxLineGap=30)
i = 0
for x1,y1,x2,y2 in lines[0]:
i+=1
cv2.line(result,(x1,y1),(x2,y2),(255,0,0),1)
print i
cv2.imshow("res",result)
cv2.waitKey(0)
I wonder why after the first step of selecting certain color, the lines are broken and with noises. I would think in this step we should do something to make the broken line a complete, less noisy line. And then try to apply something to do the Canny and Hough lines. Any ideas?
The Hough Transform is a method that is used in image processing to detect any shape, if that shape can be represented in mathematical form. It can detect the shape even if it is broken or distorted a little bit.
Use the HoughLinesP() Function of OpenCV to Detect Lines in an Image in Python. The HoughLinesP() function uses probabilistic Hough line transform to detect lines. We have to read the given image using the imread() function, convert it into grayscale, and then find its edges using Canny() .
In image processing, line detection is an algorithm that takes a collection of n edge points and finds all the lines on which these edge points lie. The most popular line detectors are the Hough transform and convolution-based techniques.
Thus, the Hough Transform algorithm detects lines by finding the (ρ, θ) pairs that have a number of intersections larger than a certain threshold.
Here is my pipeline, maybe it can give you some help.
First, get the gray image and process GaussianBlur.
img = cv2.imread('src.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
Second, process edge detection use Canny.
low_threshold = 50
high_threshold = 150
edges = cv2.Canny(blur_gray, low_threshold, high_threshold)
Then, use HoughLinesP to get the lines. You can adjust the parameters for better performance.
rho = 1 # distance resolution in pixels of the Hough grid
theta = np.pi / 180 # angular resolution in radians of the Hough grid
threshold = 15 # minimum number of votes (intersections in Hough grid cell)
min_line_length = 50 # minimum number of pixels making up a line
max_line_gap = 20 # maximum gap in pixels between connectable line segments
line_image = np.copy(img) * 0 # creating a blank to draw lines on
# Run Hough on edge detected image
# Output "lines" is an array containing endpoints of detected line segments
lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]),
min_line_length, max_line_gap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),5)
Finally, draw the lines on your srcImage.
# Draw the lines on the image
lines_edges = cv2.addWeighted(img, 0.8, line_image, 1, 0)
Here is my final performance.
Final Image:
I'm not sure what exactly you are asking, since there is no question in your posting.
One nice and robust technique to detect line segments is LSD (line segment detector), available in openCV since openCV 3.
Here's some simple basic C++ code, which can probably converted to python easily:
int main(int argc, char* argv[])
{
cv::Mat input = cv::imread("C:/StackOverflow/Input/parking.png");
cv::Mat gray;
cv::cvtColor(input, gray, CV_BGR2GRAY);
cv::Ptr<cv::LineSegmentDetector> det;
det = cv::createLineSegmentDetector();
cv::Mat lines;
det->detect(gray, lines);
det->drawSegments(input, lines);
cv::imshow("input", input);
cv::waitKey(0);
return 0;
}
Giving this result:
Which looks better for further processing than your image (no line duplicates etc.)
There are some great answers here to the first part of your question, but as for the second part (finding the line intersections) I'm not seeing a whole lot.
I'd suggest you take a look at the Bentley-Ottmann algorithm.
There are some python implementations of the algorithm here and here.
Edit: Using VeraPoseidon's Houghlines implementation and the second library linked here, I've managed to get the following result for intersection detection. Credit to Vera and the library author for their good work. The green squares represent a detected intersection. There are a few errors, but this seems like a really good starting place to me. It seems as though most of the locations you actually want to detect an intersection have multiple intersections detected, so you could probably run an appropriately sized window over the image that looked for multiple intersections and deemed a true intersection as one where that window activated.
Here is the code I used to produce that result:
import cv2
import numpy as np
import isect_segments_bentley_ottmann.poly_point_isect as bot
img = cv2.imread('parking.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)
low_threshold = 50
high_threshold = 150
edges = cv2.Canny(blur_gray, low_threshold, high_threshold)
rho = 1 # distance resolution in pixels of the Hough grid
theta = np.pi / 180 # angular resolution in radians of the Hough grid
threshold = 15 # minimum number of votes (intersections in Hough grid cell)
min_line_length = 50 # minimum number of pixels making up a line
max_line_gap = 20 # maximum gap in pixels between connectable line segments
line_image = np.copy(img) * 0 # creating a blank to draw lines on
# Run Hough on edge detected image
# Output "lines" is an array containing endpoints of detected line segments
lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]),
min_line_length, max_line_gap)
print(lines)
points = []
for line in lines:
for x1, y1, x2, y2 in line:
points.append(((x1 + 0.0, y1 + 0.0), (x2 + 0.0, y2 + 0.0)))
cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 5)
lines_edges = cv2.addWeighted(img, 0.8, line_image, 1, 0)
print(lines_edges.shape)
#cv2.imwrite('line_parking.png', lines_edges)
print points
intersections = bot.isect_segments(points)
print intersections
for inter in intersections:
a, b = inter
for i in range(3):
for j in range(3):
lines_edges[int(b) + i, int(a) + j] = [0, 255, 0]
cv2.imwrite('line_parking.png', lines_edges)
You can use something like this block of code for a strategy to remove multiple intersections in a small area:
for idx, inter in enumerate(intersections):
a, b = inter
match = 0
for other_inter in intersections[idx:]:
if other_inter == inter:
continue
c, d = other_inter
if abs(c-a) < 15 and abs(d-b) < 15:
match = 1
intersections[idx] = ((c+a)/2, (d+b)/2)
intersections.remove(other_inter)
if match == 0:
intersections.remove(inter)
Output image:
You'll have to play with the windowing function though.
I am beginner. I got something which may be helpful for this question.
A simple way to detect the lines in image.
Output:
below is code performed in google colab
import cv2
import numpy as np
from google.colab.patches import cv2_imshow
!wget https://i.stack.imgur.com/sDQLM.png
#read image
image = cv2.imread( "/content/sDQLM.png")
#convert to gray
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#performing binary thresholding
kernel_size = 3
ret,thresh = cv2.threshold(gray,200,255,cv2.THRESH_BINARY)
#finding contours
cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
#drawing Contours
radius =2
color = (30,255,50)
cv2.drawContours(image, cnts, -1,color , radius)
# cv2.imshow(image) commented as colab don't support cv2.imshow()
cv2_imshow(image)
# cv2.waitKey()
what happens if you adjust maxLineGap or size of your erosion kernel. Alternatively, you could find the distance between lines. You would have to go though pairs of lines say ax1,ay1 to ax2,ay2 c.f. bx1,by1 to bx2,by2 you can find the point where the gradient at right angles (-1 over gradient of line) to a crosses line b. Basic school geometry and simultaneous equations, something like:
x = (ay1 - by1) / ((by2 - by1) / (bx2 - bx1) + (ax2 - ax1) / (ay2 - ay1))
# then
y = by1 + x * (by2 - by1) / (bx2 - bx1)
and compare x,y with ax1,ay1
PS you might need to add a check for the distance between ax1,ay1 and bx1,by1 as some of your lines look to be continuations of other lines and these might be eliminated by the closest point technique.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With