I need to find a go game board and detect chips on the photo with opencv2 on python, but now I have problems with the board detecting, there are strange dots in the same contour and I don't understand, how I can remove them. That's what I have now:
from skimage import exposure
import numpy as np
import argparse
import imutils
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-r", required = True,
help = "ratio", type=int, default = 800)
args = vars(ap.parse_args())
img = cv2.imread('3.jpg') #upload image and change resolution
ratio = img.shape[0] / args["r"]
orig = img.copy()
img = imutils.resize(img, height = args["r"])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
cnts= cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) #search contours and sorting them
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None
for cnt in cnts:
rect = cv2.minAreaRect(cnt) # try to fit each contour in rectangle
box = cv2.boxPoints(rect)
box = np.int0(box)
area = int(rect[1][0]*rect[1][1]) # calculating contour area
if (area > 300000):
print(area)
cv2.drawContours(img, cnt, -1, (255, 0, 0), 4) #dots in contour
hull = cv2.convexHull(cnt) # calculating convex hull
cv2.drawContours(img, [hull], -1, (0, 0, 255), 3)
cv2.imshow("death", img)
cv2.waitKey(0)
Source
Result
Here's an approach to detect the board
Threshold
Find contours and then filter using cv2.contourArea()
and a minimum threshold area. In addition, use contour approximation as a second filter with cv2.approxPolyDP()
. Essentially, if a contour has four vertices, then it must be a square or a rectangle (the board).
We can also extract the bounding box of the board and put it onto a mask
Finally, if we want to obtain a top-down view of the board, we can perform a perspective transform
import cv2
import numpy as np
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.jpg')
original = image.copy()
blur = cv2.bilateralFilter(image,9,75,75)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,40,255, cv2.THRESH_BINARY_INV)[1]
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
mask = np.zeros(image.shape, dtype=np.uint8)
for c in cnts:
area = cv2.contourArea(c)
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if area > 150000 and len(approx) == 4:
cv2.drawContours(image,[c], 0, (36,255,12), 3)
cv2.drawContours(mask,[c], 0, (255,255,255), -1)
transformed = perspective_transform(original, approx)
mask = cv2.bitwise_and(mask, original)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.imshow('transformed', transformed)
cv2.waitKey()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With