Writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible. Not using "System.Net.NetworkInformation.Ping", because it appears to allocate one thread per request. Am also interested in using F# async workflows.
The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond. Not sure if this is a .NET issue, or an F# one...
Any ideas?
(note: the process must run as Admin to allow Raw Socket access)
This throws a timeout:
let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 )
However, this hangs:
let result = Ping.AsyncPing ( IPAddress.Parse( "192.168.33.22" ), 1000 )
|> Async.RunSynchronously
Here's the code...
module Ping
open System
open System.Net
open System.Net.Sockets
open System.Threading
//---- ICMP Packet Classes
type IcmpMessage (t : byte) =
let mutable m_type = t
let mutable m_code = 0uy
let mutable m_checksum = 0us
member this.Type
with get() = m_type
member this.Code
with get() = m_code
member this.Checksum = m_checksum
abstract Bytes : byte array
default this.Bytes
with get() =
[|
m_type
m_code
byte(m_checksum)
byte(m_checksum >>> 8)
|]
member this.GetChecksum() =
let mutable sum = 0ul
let bytes = this.Bytes
let mutable i = 0
// Sum up uint16s
while i < bytes.Length - 1 do
sum <- sum + uint32(BitConverter.ToUInt16( bytes, i ))
i <- i + 2
// Add in last byte, if an odd size buffer
if i <> bytes.Length then
sum <- sum + uint32(bytes.[i])
// Shuffle the bits
sum <- (sum >>> 16) + (sum &&& 0xFFFFul)
sum <- sum + (sum >>> 16)
sum <- ~~~sum
uint16(sum)
member this.UpdateChecksum() =
m_checksum <- this.GetChecksum()
type InformationMessage (t : byte) =
inherit IcmpMessage(t)
let mutable m_identifier = 0us
let mutable m_sequenceNumber = 0us
member this.Identifier = m_identifier
member this.SequenceNumber = m_sequenceNumber
override this.Bytes
with get() =
Array.append (base.Bytes)
[|
byte(m_identifier)
byte(m_identifier >>> 8)
byte(m_sequenceNumber)
byte(m_sequenceNumber >>> 8)
|]
type EchoMessage() =
inherit InformationMessage( 8uy )
let mutable m_data = Array.create 32 32uy
do base.UpdateChecksum()
member this.Data
with get() = m_data
and set(d) = m_data <- d
this.UpdateChecksum()
override this.Bytes
with get() =
Array.append (base.Bytes)
(this.Data)
//---- Synchronous Ping
let Ping (host : IPAddress, timeout : int ) =
let mutable ep = new IPEndPoint( host, 0 )
let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp )
socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout )
socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout )
let packet = EchoMessage()
let mutable buffer = packet.Bytes
try
if socket.SendTo( buffer, ep ) <= 0 then
raise (SocketException())
buffer <- Array.create (buffer.Length + 20) 0uy
let mutable epr = ep :> EndPoint
if socket.ReceiveFrom( buffer, &epr ) <= 0 then
raise (SocketException())
finally
socket.Close()
buffer
//---- Entensions to the F# Async class to allow up to 5 paramters (not just 3)
type Async with
static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> =
Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction)
static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> =
Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction)
//---- Extensions to the Socket class to provide async SendTo and ReceiveFrom
type System.Net.Sockets.Socket with
member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) =
Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP,
this.BeginSendTo,
this.EndSendTo )
member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) =
Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP,
this.BeginReceiveFrom,
(fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) )
//---- Asynchronous Ping
let AsyncPing (host : IPAddress, timeout : int ) =
async {
let ep = IPEndPoint( host, 0 )
use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp )
socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout )
socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout )
let packet = EchoMessage()
let outbuffer = packet.Bytes
try
let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep )
if result <= 0 then
raise (SocketException())
let epr = ref (ep :> EndPoint)
let inbuffer = Array.create (outbuffer.Length + 256) 0uy
let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr )
if result <= 0 then
raise (SocketException())
return inbuffer
finally
socket.Close()
}
James, your own accepted answer has a problem I wanted to point out. You only allocate one timer, which makes the async object returned by AsyncReceiveEx a stateful one-time-use object. Here's a similar example that I trimmed down:
let b,e,c = Async.AsBeginEnd(Async.Sleep)
type Example() =
member this.Close() = ()
member this.AsyncReceiveEx( sleepTime, (timeoutMS:int) ) =
let timedOut = ref false
let completed = ref false
let timer = new System.Timers.Timer(double(timeoutMS), AutoReset=false)
timer.Elapsed.Add( fun _ ->
lock timedOut (fun () ->
timedOut := true
if not !completed
then this.Close()
)
)
let complete() =
lock timedOut (fun () ->
timer.Stop()
timer.Dispose()
completed := true
)
Async.FromBeginEnd( sleepTime,
(fun st ->
let result = b(st)
timer.Start()
result
),
(fun result ->
complete()
if !timedOut
then printfn "err"; ()
else e(result)
),
(fun () ->
complete()
this.Close()
)
)
let ex = new Example()
let a = ex.AsyncReceiveEx(3000, 1000)
Async.RunSynchronously a
printfn "ok..."
// below throws ODE, because only allocated one Timer
Async.RunSynchronously a
Ideally you want every 'run' of the async returned by AsyncReceiveEx to behave the same, which means each run needs its own timer and set of ref flags. This is easy to fix thusly:
let b,e,c = Async.AsBeginEnd(Async.Sleep)
type Example() =
member this.Close() = ()
member this.AsyncReceiveEx( sleepTime, (timeoutMS:int) ) =
async {
let timedOut = ref false
let completed = ref false
let timer = new System.Timers.Timer(double(timeoutMS), AutoReset=false)
timer.Elapsed.Add( fun _ ->
lock timedOut (fun () ->
timedOut := true
if not !completed
then this.Close()
)
)
let complete() =
lock timedOut (fun () ->
timer.Stop()
timer.Dispose()
completed := true
)
return! Async.FromBeginEnd( sleepTime,
(fun st ->
let result = b(st)
timer.Start()
result
),
(fun result ->
complete()
if !timedOut
then printfn "err"; ()
else e(result)
),
(fun () ->
complete()
this.Close()
)
)
}
let ex = new Example()
let a = ex.AsyncReceiveEx(3000, 1000)
Async.RunSynchronously a
printfn "ok..."
Async.RunSynchronously a
The only change is to put the body of AsyncReceiveEx inside async{...}
and have the last line return!
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With