Is it possible to define a color of a specific cell in a pandas dataframe based on integer position like for instance df.iloc[1,1] with pandas styling? https://pandas.pydata.org/pandas-docs/stable/style.html
Something like the following would be nice, but is not working.
def style_specific_cell(val):
color = 'lightgreen'
val.iloc[2, 8] = color
return XYZ
df = df.style.applymap(style_specific_cell, subset=['Column1']
Select Cell Value from DataFrame Using df['col_name']. values[] We can use df['col_name']. values[] to get 1×1 DataFrame as a NumPy array, then access the first and only value of that array to get a cell value, for instance, df["Duration"].
You can set cell value of pandas dataframe using df.at[row_label, column_label] = 'Cell Value'. It is the fastest method to set the value of the cell of the pandas dataframe. Dataframe at property of the dataframe allows you to access the single value of the row/column pair using the row and column labels.
You can use df[df["Courses"] == 'Spark'] to filter rows by a condition in pandas DataFrame.
Conditional cell highlighting. One way to conditionally format your Pandas DataFrame is to highlight cells which meet certain conditions. To do so, we can write a simple function and pass that function into the Styler object using . apply() or .
Use style.Styler.apply
with helper DataFrame
of styles:
def style_specific_cell(x):
color = 'background-color: lightgreen'
df1 = pd.DataFrame('', index=x.index, columns=x.columns)
df1.iloc[2, 8] = color
return df1
df.style.apply(style_specific_cell, axis=None)
Sample DataFrame
:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With