I want to use ModelMapper to convert entity to DTO and back. Mostly it works, but how do I customize it. It has has so many options that it's hard to figure out where to start. What's best practice?
I'll answer it myself below, but if another answer is better I'll accept it.
I believe that ModelMapper is based on reflection and performs the mapping during runtime. Whereas MapStruct is a code generator which generates the mapping code (java classes) during compilation time. So naturally if you are worried about performance then MapStruct is the clear choice.
Model Mapper The main role of ModelMapper is to map objects by determining how one object model is mapped to another called a Data Transformation Object (DTO).
The first is by adding the converter to a ModelMapper: modelMapper. addConverter(personConverter); This, in turn, sets the converter against the TypeMap corresponding to the source and destination types Person and PersonDTO .
First here are some links
My impression of mm is that it is very well engineered. The code is solid and a pleasure to read. However, the documentation is very terse, with very few examples. Also the api is confusing because there seems to be 10 ways to do anything, and no indication of why you’d do it one way or another.
There are two alternatives: Dozer is the most popular, and Orika gets good reviews for ease of use.
Assuming you still want to use mm, here’s what I’ve learned about it.
The main class, ModelMapper
, should be a singleton in your app. For me, that meant a @Bean using Spring. It works out of the box for simple cases. For example, suppose you have two classes:
class DogData
{
private String name;
private int mass;
}
class DogInfo
{
private String name;
private boolean large;
}
with appropriate getters/setters. You can do this:
ModelMapper mm = new ModelMapper();
DogData dd = new DogData();
dd.setName("fido");
dd.setMass(70);
DogInfo di = mm.map(dd, DogInfo.class);
and the "name" will be copied from dd to di.
There are many ways to customize mm, but first you need to understand how it works.
The mm object contains a TypeMap for each ordered pair of types, such as <DogInfo, DogData> and <DogData, DogInfo> would be two TypeMaps.
Each TypeMap contains a PropertyMap with a list of mappings. So in the example the mm will automatically create a TypeMap<DogData, DogInfo> that contains a PropertyMap that has a single mapping.
We can write this
TypeMap<DogData, DogInfo> tm = mm.getTypeMap(DogData.class, DogInfo.class);
List<Mapping> list = tm.getMappings();
for (Mapping m : list)
{
System.out.println(m);
}
and it will output
PropertyMapping[DogData.name -> DogInfo.name]
When you call mm.map() this is what it does,
Caveat: This flowchart is sort of documented but I had to guess a lot, so it might not be all correct!
You can customize every single step of this process. But the two most common are
Here is a sample of a custom TypeMap Converter:
Converter<DogData, DogInfo> myConverter = new Converter<DogData, DogInfo>()
{
public DogInfo convert(MappingContext<DogData, DogInfo> context)
{
DogData s = context.getSource();
DogInfo d = context.getDestination();
d.setName(s.getName());
d.setLarge(s.getMass() > 25);
return d;
}
};
mm.addConverter(myConverter);
Note the converter is one-way. You have to write another if you want to customize DogInfo to DogData.
Here is a sample of a custom PropertyMap:
Converter<Integer, Boolean> convertMassToLarge = new Converter<Integer, Boolean>()
{
public Boolean convert(MappingContext<Integer, Boolean> context)
{
// If the dog weighs more than 25, then it must be large
return context.getSource() > 25;
}
};
PropertyMap<DogData, DogInfo> mymap = new PropertyMap<DogData, DogInfo>()
{
protected void configure()
{
// Note: this is not normal code. It is "EDSL" so don't get confused
map(source.getName()).setName(null);
using(convertMassToLarge).map(source.getMass()).setLarge(false);
}
};
mm.addMappings(mymap);
The pm.configure function is really funky. It’s not actual code. It is dummy EDSL code that gets interpreted somehow. For instance the parameter to the setter is not relevant, it is just a placeholder. You can do lots of stuff in here, such as
Note the custom mappings are added to the default mappings, so you do not need, for example, to specify
map(source.getName()).setName(null);
in your custom PropertyMap.configure().
In this example, I had to write a Converter to map Integer to Boolean. In most cases this will not be necessary because mm will automatically convert Integer to String, etc.
I'm told you can also create mappings using Java 8 lambda expressions. I tried, but I could not figure it out.
Final Recommendations and Best Practice
By default mm uses MatchingStrategies.STANDARD
which is dangerous. It can easily choose the wrong mapping and cause strange, hard to find bugs. And what if next year someone else adds a new column to the database? So don't do it. Make sure you use STRICT mode:
mm.getConfiguration().setMatchingStrategy(MatchingStrategies.STRICT);
Always write unit tests and ensure that all mappings are validated.
DogInfo di = mm.map(dd, DogInfo.class);
mm.validate(); // make sure nothing in the destination is accidentally skipped
Fix any validation failures with mm.addMappings()
as shown above.
Put all your mappings in a central place, where the mm singleton is created.
I faced a problem while mapping with ModelMapper. Not only properties but also My source and destination type were different. I solved this problem by doing this ->
if the source and destination type are different. For example,
@Entity
class Student {
private Long id;
@OneToOne
@JoinColumn(name = "laptop_id")
private Laptop laptop;
}
And Dto ->
class StudentDto {
private Long id;
private LaptopDto laptopDto;
}
Here, the source and destination types are different. So, if your MatchingStrategies are STRICT, you won't able to map between these two different types. Now to solve this, Just simply put this below code in the constructor of your controller class or any class where you want to use ModelMapper->
private ModelMapper modelMapper;
public StudentController(ModelMapper modelMapper) {
this.modelMapper = modelMapper;
this.modelMapper.typeMap(Student.class, StudentDto.class).addMapping(Student::getLaptop, StudentDto::setLaptopDto);
}
That's it. Now you can use ModelMapper.map(source, destination) easily. It will map automatically
modelMapper.map(student, studentDto);
I've been using it from last 6 months, I'm going to explain some of my thoughts about that:
First of all, it is recommended to use it as an unique instance (singleton, spring bean,...), that's explained in the manual, and I think all agree with that.
ModelMapper
is a great mapping library and wide flexible. Due to its flexibility, there are many ways to get the same result, and that's why it should be in the manual of best practices of when to use one or other way to do the same thing.
Starting with ModelMapper
is a little bit difficult, it has a very tight learning curve and sometimes it is not easy to understand the best ways to do something, or how to do some other thing. So, to start it is required to read and understand the manual precisely.
You can configure your mapping as you want using the next settings:
Access level
Field matching
Naming convention
Name transformer
Name tokenizer
Matching strategy
The default configuration is simply the best (http://modelmapper.org/user-manual/configuration/), but if you want to customise it you are able to do it.
Just one thing related to the Matching Strategy configuration, I think this is the most important configuration and is need to be careful with it. I would use the Strict
or Standard
but never the Loose
, why?
Otherwise, it is important to validate
all property matches, you verify all it works, and with ModelMapper it's more need due with intelligent mapping it is done via reflection so you will not have the compiler help, it will continue compiling but the mapping will fail without realising it. That's one of the things I least like, but it needs to avoid boilerplate and manual mapping.
Finally, if you are sure to use ModelMapper in your project you should use it using the way it proposes, don't mix it with manual mappings (for example), just use ModelMapper, if you don't know how to do something be sure is possible (investigate,...). Sometimes is hard to do it with model mapper (I also don't like it) as doing by hand but is the price you should pay to avoid boilerplate mappings in other POJOs.
import org.modelmapper.ModelMapper;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class EntityDtoConversionUtil {
@Autowired
private ModelMapper modelMapper;
public Object convert(Object object,Class<?> type) {
Object MapperObject=modelMapper.map(object, type);
return MapperObject;
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With