Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to create pandas dataframes with more than 2 dimensions?

I want to be able to create n-dimensional dataframes. I've heard of a method for 3D dataframes using panels in pandas but, if possible, I would like to extend the dimensions past 3 dims by combining different datasets into a super dataframe

I tried this but I cannot figure out how to use these methods with my test dataset -> Constructing 3D Pandas DataFrame

Also, this did not help for my case -> Pandas Dataframe or Panel to 3d numpy array

I made a random test dataset with arbitrary axis data trying to mimic a real situation; there are 3 axis (i.e. patients, years, and samples). I tried adding a bunch of dataframes to a list and then making a dataframe with that but it didn't work :( I even tried a panel as in the 2nd link above but I couldn't get it to work either.

Does anybody know how to create a N-dimensional pandas dataframe w/ labels?

The first way I tried:

#Reproducibility
np.random.seed(1618033)

#Set 3 axis labels/dims
axis_1 = np.arange(2000,2010) #Years
axis_2 = np.arange(0,20) #Samples
axis_3 = np.array(["patient_%d" % i for i in range(0,3)]) #Patients

#Create random 3D array to simulate data from dims above
A_3D = np.random.random((years.size, samples.size, len(patients))) #(10, 20, 3)

#Create empty list to store 2D dataframes (axis_2=rows, axis_3=columns) along axis_1
list_of_dataframes=[]

#Iterate through all of the year indices
for i in range(axis_1.size):
    #Create dataframe of (samples, patients)
    DF_slice = pd.DataFrame(A_3D[i,:,:],index=axis_2,columns=axis_3)
    list_of_dataframes.append(DF_slice)
#     print(DF_slice) #preview of the 2D dataframes "slice" of the 3D array
#           patient_0  patient_1  patient_2
#      0    0.727753   0.154701   0.205916
#      1    0.796355   0.597207   0.897153
#      2    0.603955   0.469707   0.580368
#      3    0.365432   0.852758   0.293725
#      4    0.906906   0.355509   0.994513
#      5    0.576911   0.336848   0.265967
#     ...
#     19   0.583495   0.400417   0.020099

# DF_3D = pd.DataFrame(list_of_dataframes,index=axis_2, columns=axis_1)
# Error
# Shape of passed values is (1, 10), indices imply (10, 20)

2nd way I tried:

DF = pd.DataFrame(axis_3,columns=axis_2) 
#Error:
#Shape of passed values is (1, 3), indices imply (20, 3)

# p={}
# for i in axis_1:
#     p[i]=DF
# panel= pd.Panel(p)

I could do something like this I guess, but I really like pandas and would rather use one of their methods if one exists:

#Set data for query
query_year = 2007
query_sample = 15
query_patient = "patient_1"

#Index based on query
A_3D[
     (axis_1 == query_year).argmax(),
     (axis_2 == query_sample).argmax(),
     (axis_3 == query_patient).argmax()
]
#0.1231212416981845

It would be awesome to access the data in this way:

DF_3D[query_year][query_sample][query_patient]
#Where DF_3D[query_year] would give a list of 2D arrays (row=sample, col=patient)
# DF_3D[query_year][query_sample] would give a 1D vector/list of patient data for a particular year, of a particular sample.
# and DF_3D[query_year][query_sample][query_patient] would be a particular sample of a particular patient of a particular year
like image 499
O.rka Avatar asked Apr 21 '16 05:04

O.rka


2 Answers

Rather than using an n-dimensional Panel, you are probably better off using a two dimensional representation of data, but using MultiIndexes for the index, column or both.

For example:

np.random.seed(1618033)

#Set 3 axis labels/dims
years = np.arange(2000,2010) #Years
samples = np.arange(0,20) #Samples
patients = np.array(["patient_%d" % i for i in range(0,3)]) #Patients

#Create random 3D array to simulate data from dims above
A_3D = np.random.random((years.size, samples.size, len(patients))) #(10, 20, 3)

# Create the MultiIndex from years, samples and patients.
midx = pd.MultiIndex.from_product([years, samples, patients])

# Create sample data for each patient, and add the MultiIndex.
patient_data = pd.DataFrame(np.random.randn(len(midx), 3), index = midx)

>>> patient_data.head()
                         0         1         2
2000 0 patient_0 -0.128005  0.371413 -0.078591
       patient_1 -0.378728 -2.003226 -0.024424
       patient_2  1.339083  0.408708  1.724094
     1 patient_0 -0.997879 -0.251789 -0.976275
       patient_1  0.131380 -0.901092  1.456144

Once you have data in this form, it is relatively easy to juggle it around. For example:

>>> patient_data.unstack(level=0).head()  # Years.
                    0                                                                                              ...            2                                                                                          
                 2000      2001      2002      2003      2004      2005      2006      2007      2008      2009    ...         2000      2001      2002      2003      2004      2005      2006      2007      2008      2009
0 patient_0 -0.128005  0.051558  1.251120  0.666061 -1.048103  0.259231  1.535370  0.156281 -0.609149  0.360219    ...    -0.078591 -2.305314 -2.253770  0.865997  0.458720  1.479144 -0.214834 -0.791904  0.800452  0.235016
  patient_1 -0.378728 -0.117470 -0.306892  0.810256  2.702960 -0.748132 -1.449984 -0.195038  1.151445  0.301487    ...    -0.024424  0.114843  0.143700  1.732072  0.602326  1.465946 -1.215020  0.648420  0.844932 -1.261558
  patient_2  1.339083 -0.915771  0.246077  0.820608 -0.935617 -0.449514 -1.105256 -0.051772 -0.671971  0.213349    ...     1.724094  0.835418  0.000819  1.149556 -0.318513 -0.450519 -0.694412 -1.535343  1.035295  0.627757
1 patient_0 -0.997879 -0.242597  1.028464  2.093807  1.380361  0.691210 -2.420800  1.593001  0.925579  0.540447    ...    -0.976275  1.928454 -0.626332 -0.049824 -0.912860  0.225834  0.277991  0.326982 -0.520260  0.788685
  patient_1  0.131380  0.398155 -1.671873 -1.329554 -0.298208 -0.525148  0.897745 -0.125233 -0.450068 -0.688240    ...     1.456144 -0.503815 -1.329334  0.475751 -0.201466  0.604806 -0.640869 -1.381123  0.524899  0.041983

In order to select the data, please refere to the docs for MultiIndexing.

like image 106
Alexander Avatar answered Sep 18 '22 06:09

Alexander


You should consider using xarray instead. From their documentation:

Panel, pandas’ data structure for 3D arrays, was always a second class data structure compared to the Series and DataFrame. To allow pandas developers to focus more on its core functionality built around the DataFrame, pandas removed Panel in favor of directing users who use multi-dimensional arrays to xarray.

like image 30
Basileios Avatar answered Sep 19 '22 06:09

Basileios