I am using following C function to create multiple network namespaces from a single process instance:
void create_namespace(const char *ns_name)
{
char ns_path[100];
snprintf(ns_path, 100, "%s/%s", "/var/run/netns", ns_name);
close(open(ns_path, O_RDONLY|O_CREAT|O_EXCL, 0));
unshare(CLONE_NEWNET);
mount("/proc/self/ns/net", ns_path, "none", MS_BIND , NULL);
}
After my process creates all the namspaces and I add a tap interface to any of the one network namespace (with ip link set tap1 netns ns1
command), then I actually see this interface in all of the namespaces (presumably, this is actually a single namespace that goes under different names).
But, if I create multiple namespaces by using multiple processes, then everything is working just fine.
What could be wrong here? Do I have to pass any additional flags to the unshare()
to get this working from a single process instance? Is there a limitation that a single process instance can't create multiple network namespaces? Or is there a problem with mount()
call, because /proc/self/ns/net
is actually mounted multiple times?
Update:
It seems that unshare()
function creates multiple network namespaces correctly, but all the mount points in /var/run/netns/
actually reference to the first network namespace that was mounted in that direcotry.
Update2: It seems that the best approach is to fork() another process and execute create_namespace() function from there. Anyway, I would be glad to hear a better solution that does not involve fork() call or at least get a confirmation that would prove that it is impossible to create and manage multiple network namespaces from a single process.
Update3: I am able to create multiple namespaces with unshare() by using the following code:
int main() {
create_namespace("a");
system("ip tuntap add mode tap tapa");
system("ifconfig -a");//shows lo and tapA interface
create_namespace("b");
system("ip tuntap add mode tap tapb");
system("ifconfig -a");//show lo and tapB interface, but does not show tapA. So this is second namespace created.
}
But after the process terminates and I execute ip netns exec a ifconfig -a
and ip netns exec b ifconfig -a
it seems that both commands were suddenly executed in namespace a. So the actual problem is storing the references to the namespaces (or calling mount() the right way. But I am not sure, if this is possible).
To create a network namespace in Linux, you need to execute the ip command followed by the netns (network namespace) option, the add option, and the new namespace name, as shown in the following screenshot. Then, the ip netns command can be run to show the existing network namespaces only.
A network namespace is a logical copy of the network stack from the host system. Network namespaces are useful for setting up containers or virtual environments. Each namespace has its own IP addresses, network interfaces, routing tables, and so forth.
The mount namespace is used to isolate mount points such that processes in different namespaces cannot view each others' files. If you are familiar with the chroot command, it functions similarly.
Network Namespaces are, by design, created with a call to clone, and it can be modified after by unshare. Take note that even if you do create a new network namespace with unshare, in fact you just modify network stack of your running process. unshare is unable to modify network stack of other processes, so you won't be able to create another one only with unshare.
In order to work, a new network namespace needs a new network stack, and so it needs a new process. That's all.
Good news is that it can be made very lightweight with clone, see:
Clone() differs from the traditional fork() system call in UNIX, in that it allows the parent and child processes to selectively share or duplicate resources.
You are able to divert only on this network stack (and avoid memory space, table of file descriptors and table of signal handlers). Your new network process can be made more like a thread than a real fork.
You can manipulate them with C code or with Linux Kernel and/or LXC tools.
For instance, to add a device to new network namespace, it's as simple as:
echo $PID > /sys/class/net/ethX/new_ns_pid
See this page for more info about CLI available.
On the C-side, one can take a look at lxc-unshare implementation. Despite its name it uses clone, as you can see (lxc_clone is here). One can also look at LTP implementation, where the author has chosen to use fork directly.
EDIT: There is a trick that you can use to make them persistent, but you will still need to fork, even temporarily.
Take a look at this code of ipsource2 (I have removed error checking for clarity):
snprintf(netns_path, sizeof(netns_path), "%s/%s", NETNS_RUN_DIR, name);
/* Create the base netns directory if it doesn't exist */
mkdir(NETNS_RUN_DIR, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);
/* Create the filesystem state */
fd = open(netns_path, O_RDONLY|O_CREAT|O_EXCL, 0);
[...]
close(fd);
unshare(CLONE_NEWNET);
/* Bind the netns last so I can watch for it */
mount("/proc/self/ns/net", netns_path, "none", MS_BIND, NULL)
If you execute this code in a forked process, you'll be able to create new network namespace at will. In order to delete them, you can simply umount and delete this bind:
umount2(netns_path, MNT_DETACH);
if (unlink(netns_path) < 0) [...]
EDIT2: Another (dirty) trick would be simply to execute "ip netns add .." cli with system.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With