Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to create an edge list from pandas dataframe?

I have a pandas dataframe (df) of the form-

    Col1
A  [Green,Red,Purple]
B  [Red, Yellow, Blue]
C  [Brown, Green, Yellow, Blue]

I need to convert this to an edge list i.e. a dataframe of the form:

Source    Target    Weight
  A         B         1
  A         C         1
  B         C         2

EDIT Note that the new dataframe has rows equal to the total number of possible pairwise combinations. Also, to compute the 'Weight' column, we simply find the intersection between the two lists. For instance, for B&C, the elements share two colors: Blue and Yellow. Therefore, the 'Weight' for the corresponding row is 2.

What is the fastest way to do this? The original dataframe contains about 28,000 elements.

like image 829
Melsauce Avatar asked Jul 09 '17 01:07

Melsauce


2 Answers

First, starting off with the dataframe:

from itertools import combinations

df = pd.DataFrame({
        'Col1': [['Green','Red','Purple'], 
                 ['Red', 'Yellow', 'Blue'], 
                 ['Brown', 'Green', 'Yellow', 'Blue']]
     }, index=['A', 'B', 'C'])

df['Col1'] = df['Col1'].apply(set)    
df

                           Col1
A          {Purple, Red, Green}
B           {Red, Blue, Yellow}
C  {Green, Yellow, Blue, Brown}

Each list in Col1 has been converted into a set to find the union efficiently. Next, we'll use itertools.combinations to create pairwise combinations of all rows in df:

df1 = pd.DataFrame(
    data=list(combinations(df.index.tolist(), 2)), 
    columns=['Src', 'Dst'])

df1

  Src Dst
0   A   B
1   A   C
2   B   C

Now, apply a function to take the union of the sets and find its length. The Src and Dst columns act as a lookup into df.

df1['Weights'] = df1.apply(lambda x: len(
    df.loc[x['Src']]['Col1'].intersection(df.loc[x['Dst']]['Col1'])), axis=1)
df1

  Src Dst  Weights
0   A   B        1
1   A   C        1
2   B   C        2

I advice set conversion at the very beginning. Converting your lists to a set each time on the fly is expensive and wasteful.

For more speedup, you'd probably want to also copy the sets into two columns in the new dataframe because calling df.loc constantly will slow it down a notch.

like image 146
cs95 Avatar answered Oct 26 '22 03:10

cs95


Try this. Not very neat but work. PS: The final out put you can adjust it , I did not drop columns and change the columns name

import pandas as pd 
df=pd.DataFrame({"Col1":[['Green','Red','Purple'],['Red', 'Yellow', 'Blue'],['Brown', 'Green', 'Yellow', 'Blue']],"two":['A','B','C']})
df=df.set_index('two')
del df.index.name
from itertools import combinations
DF=pd.DataFrame()
dict1=df.T.to_dict('list')
DF=pd.DataFrame(data=[x for x in combinations(df.index, 2)])
DF['0_0']=DF[0].map(df['Col1'])
DF['1_1']=DF[1].map(df['Col1'])
DF['Weight']=DF.apply(lambda x : len(set(x['0_0']).intersection(x['1_1'])),axis=1)



DF
Out[174]: 
   0  1                   0_0                           1_1  Weight
0  A  B  [Green, Red, Purple]           [Red, Yellow, Blue]       1
1  A  C  [Green, Red, Purple]  [Brown, Green, Yellow, Blue]       1
2  B  C   [Red, Yellow, Blue]  [Brown, Green, Yellow, Blue]       2
like image 25
BENY Avatar answered Oct 26 '22 02:10

BENY