I have to plot a wordcloud. 'tweets.csv' is a Pandas dataframe which has a column named 'text'. The plotted graph hasn't been based on the most common words, tough. How can the words sizes be linked to their frequencies in dataframe?
text = df_final.text.values
wordcloud = WordCloud(
#mask = logomask,
max_words = 1000,
width = 600,
height = 400,
#max_font_size = 1000,
#min_font_size = 100,
normalize_plurals = True,
#scale = 5,
#relative_scaling = 0,
background_color = 'black',
stopwords = STOPWORDS.union(stopwords)
).generate(str(text))
fig = plt.figure(
figsize = (50,40),
facecolor = 'k',
edgecolor = 'k')
plt.imshow(wordcloud, interpolation = 'bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()
My dataframe looks like this:
0 RT @Pontifex_pt: Temos que descobrir as riquezezas ...
1 RT @Pontifex_pt: Todos estamos em viagem rumo ...
2 RT @Pontifex_pt: Unamos as forças, em todos ...
3 RT @GeneralMourao: #Segurançapública, preocupa ...
4 RT @FIFAcom: The Brasileirao U-17 final provided ...
In pandas you can get the count of the frequency of a value that occurs in a DataFrame column by using Series. value_counts() method, alternatively, If you have a SQL background you can also get using groupby() and count() method.
Using the count(), size() method, Series. value_counts(), and pandas. Index. value_counts() method we can count the number of frequency of itemsets in the given DataFrame.
import pandas as pd
df = pd.DataFrame({'word': ['how', 'are', 'you', 'doing', 'this', 'afternoon'],
'count': [7, 10, 4, 1, 20, 100]})
word count
0 how 7
1 are 10
2 you 4
3 doing 1
4 this 20
5 afternoon 100
word
& count
columns to a dict
WordCloud().generate_from_frequencies()
requires a dict
# method 1: convert to dict
data = dict(zip(df['word'].tolist(), df['count'].tolist()))
# method 2: convert to dict
data = df.set_index('word').to_dict()['count']
print(data)
[out]: {'how': 7, 'are': 10, 'you': 4, 'doing': 1, 'this': 20, 'afternoon': 100}
.generate_from_frequencies
generate_from_frequencies(frequencies, max_font_size=None)
from wordcloud import WordCloud
wc = WordCloud(width=800, height=400, max_words=200).generate_from_frequencies(data)
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
twitter_mask = np.array(Image.open('twitter.png'))
wc = WordCloud(background_color='white', width=800, height=400, max_words=200, mask=twitter_mask).generate_from_frequencies(data_nyt)
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.imshow(twitter_mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With