https://www.codewars.com/kata/is-my-friend-cheating/train/javascript
My goal is to devise a function that finds number pairs (a, b)
which satisfy the equation a * b == sum(1, 2, 3 ..., n-2, n-1, n) - a - b
.
The following code finds all the pairs, but is too slow and times out. I have seen in the comments for this challenge that the algorithm needs to have O(n) complexity to pass. How is this done?
function removeNb (n) {
if(n===1) return null;
let sum = (n * (n+1))/2;
let retArr = [];
let a = n;
while( a !== 0){
let b = n;
while( b !== 0){
if(b != a && a*b == ((sum - b) - a) ){
retArr.push([a,b]);
}
b--;
}
a--;
}
retArr.sort( (a,b) => a[0] - b[0]);
return retArr;
}
Thanks to all for the assistance! Here is my final solution:
function removeNb (n) {
let retArr = [];
let a = 1;
let b = 0;
let sumN = (n * (n+1))/2;
while( a <= n){
b = parseInt((sumN - a) / (a + 1));
if( b < n && a*b == ((sumN - b) - a) )
retArr.push([a,b]);
a++;
}
return retArr;
}
I think my main issue was an (embarrassing) error with my algebra when I attempted to solve for b
. Here are the proper steps for anyone wondering:
a*b = sum(1 to n) - a - b
ab + b = sumN - a
b(a + 1) = sumN - a
b = (sumN - a) / (a + 1)
You can solve for b and get: b = (sum - a)/(a + 1)
(given a != -1)
Now iterate over a
once -> O(n)
let n = 100;
let sumOfNum = n => {
return (n * (n + 1)) / 2;
};
let sum = sumOfNum(n);
let response = [];
for (let i = 1; i <= 26; i++) {
let s = (sum - i) / (i + 1);
if (s % 1 == 0 && s * i == sum - s - i && s <= n) {
response.push([s, i]);
}
}
// this is O(N) time complexity
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With