I have a code to convert my avro record to Row using function avroToRowConverter()
directKafkaStream.foreachRDD(rdd -> {
JavaRDD<Row> newRDD= rdd.map(x->{
Injection<GenericRecord, byte[]> recordInjection = GenericAvroCodecs.toBinary(SchemaRegstryClient.getLatestSchema("poc2"));
return avroToRowConverter(recordInjection.invert(x._2).get());
});
This function is not working for nested schema (TYPE= UNION)
.
private static Row avroToRowConverter(GenericRecord avroRecord) {
if (null == avroRecord) {
return null;
}
//GenericData
Object[] objectArray = new Object[avroRecord.getSchema().getFields().size()];
StructType structType = (StructType) SchemaConverters.toSqlType(avroRecord.getSchema()).dataType();
for (Schema.Field field : avroRecord.getSchema().getFields()) {
if(field.schema().getType().toString().equalsIgnoreCase("STRING") || field.schema().getType().toString().equalsIgnoreCase("ENUM")){
objectArray[field.pos()] = ""+avroRecord.get(field.pos());
}else {
objectArray[field.pos()] = avroRecord.get(field.pos());
}
}
return new GenericRowWithSchema(objectArray, structType);
}
Can anyone suggest how can I convert complex schema to ROW?
There is SchemaConverters.createConverterToSQL
but it is private unfortunately.
There are PRs to make it public, but they were never merged:
There's a workaround though that we used.
You can expose it by creating a class in com.databricks.spark.avro
package:
package com.databricks.spark.avro
import org.apache.avro.Schema
import org.apache.avro.generic.GenericRecord
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.DataType
object MySchemaConversions {
def createConverterToSQL(avroSchema: Schema, sparkSchema: DataType): (GenericRecord) => Row =
SchemaConverters.createConverterToSQL(avroSchema, sparkSchema).asInstanceOf[(GenericRecord) => Row]
}
Then you can use it in your code like this:
final DataType myAvroType = SchemaConverters.toSqlType(MyAvroRecord.getClassSchema()).dataType();
final Function1<GenericRecord, Row> myAvroRecordConverter =
MySchemaConversions.createConverterToSQL(MyAvroRecord.getClassSchema(), myAvroType);
Row[] convertAvroRecordsToRows(List<GenericRecord> records) {
return records.stream().map(myAvroRecordConverter::apply).toArray(Row[]::new);
}
For one record you can just call it like this:
final Row row = myAvroRecordConverter.apply(record);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With