I'm trying to implement fast double Fibonacci algorithm as described here:
// Fast doubling Fibonacci algorithm
package main
import "fmt"
// (Public) Returns F(n).
func fibonacci(n int) int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (int, int) {
if n == 0 {
return 0, 1
}
a, b := fib(n / 2)
c := a * (b*2 - a)
d := a*a + b*b
if n%2 == 0 {
return c, d
} else {
return d, c + d
}
}
func main() {
fmt.Println(fibonacci(13))
fmt.Println(fibonacci(14))
}
This works fine for small numbers; however, when the input number get larger, the program returns a wrong result. So I tried to use bigInt
from math/big
package:
// Fast doubling Fibonacci algorithm
package main
import (
"fmt"
"math/big"
)
// (Public) Returns F(n).
func fibonacci(n int) big.Int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (big.Int, big.Int) {
if n == 0 {
return big.Int(0), big.Int(1)
}
a, b := fib(n / 2)
c := a * (b*2 - a)
d := a*a + b*b
if n%2 == 0 {
return c, d
} else {
return d, c + d
}
}
func main() {
fmt.Println(fibonacci(123))
fmt.Println(fibonacci(124))
}
However, go build complains that
cannot convert 0 (type int) to type big.Int
How to mitigate this problem?
Golang doesn't check for overflows implicitly and so this may lead to unexpected results when a number larger than 64 bits are stored in a int64. To solve this problem, Go provides the Package “big” which implements arbitrary-precision arithmetic (big numbers).
Go is a statically typed language, which means types of variables must be known at compile time, and you can't change their type at runtime.
Use big.NewInt()
instead of big.Int()
. big.Int()
is just type casting.
You need to check out documentation of big
package
You should mostly use methods with form func (z *T) Binary(x, y *T) *T // z = x op y
To multiply 2 arguments you need to provide result variable, after it call Mul
method. So, for example, to get result of 2*2 you need to:big.NewInt(0).Mul(big.NewInt(2), big.NewInt(2))
You can try working example on the Go playground
Also you can create extension functions like:
func Mul(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
To make code more readable:
// Fast doubling Fibonacci algorithm
package main
import (
"fmt"
"math/big"
)
// (Public) Returns F(n).
func fibonacci(n int) *big.Int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (*big.Int, *big.Int) {
if n == 0 {
return big.NewInt(0), big.NewInt(1)
}
a, b := fib(n / 2)
c := Mul(a, Sub(Mul(b, big.NewInt(2)), a))
d := Add(Mul(a, a), Mul(b, b))
if n%2 == 0 {
return c, d
} else {
return d, Add(c, d)
}
}
func main() {
fmt.Println(fibonacci(123))
fmt.Println(fibonacci(124))
}
func Mul(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
func Sub(x, y *big.Int) *big.Int {
return big.NewInt(0).Sub(x, y)
}
func Add(x, y *big.Int) *big.Int {
return big.NewInt(0).Add(x, y)
}
Try it on the Go playground
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With