I've a large dataframe which contains 12 columns each for two types of values, Rested and Active. I want to convert the columns of each month into rows, thus bring all the month columns (Jan, Feb, Mar... ) under 'Month'
My data is as follows:
ID L1 L2 Year JR FR MR AR MYR JR JLR AGR SR OR NR DR JA FA MA AA MYA JA JLA AGA SA OA NA DA
1234 89 65 2003 11 34 6 7 8 90 65 54 3 22 55 66 76 86 30 76 43 67 13 98 67 0 127 74
1234 45 76 2004 67 87 98 5 4 3 77 8 99 76 56 4 3 2 65 78 44 53 67 98 79 53 23 65
I'm trying to make it appear as below (column R represents Rested and column A represents Active. and monthly JR, FR, MR respectively means Jan Rested, Feb Rested, Mar Rested and JA, FA, MA respectively means Jan Active, Feb Active, Mar Active and etc):
So, here I'm trying to convert each of the monthly columns to rows and keeping them beside each other for R and A values by creating a new Month column.
ID L1 L2 Year Month R A
1234 89 65 2003 Jan 11 76
1234 89 65 2003 Feb 34 86
1234 89 65 2003 Mar 6 30
1234 89 65 2003 Apr 7 76
1234 89 65 2003 May 8 43
1234 89 65 2003 Jun 90 67
1234 89 65 2003 Jul 65 13
1234 89 65 2003 Aug 54 98
1234 89 65 2003 Sep 3 67
1234 89 65 2003 Oct 22 0
1234 89 65 2003 Nov 55 127
1234 89 65 2003 Dec 66 74
1234 45 76 2004 Jan 67 3
1234 45 76 2004 Feb 87 2
1234 45 76 2004 Mar 98 65
1234 45 76 2004 Apr 5 78
1234 45 76 2004 May 4 44
1234 45 76 2004 Jun 3 53
1234 45 76 2004 Jul 77 67
1234 45 76 2004 Aug 8 98
1234 45 76 2004 Sep 99 79
1234 45 76 2004 Oct 76 53
1234 45 76 2004 Nov 56 23
1234 45 76 2004 Dec 4 65
I've tried various things like stack
,melt
,unlist
data_reshape <- reshape(df,direction="long", varying=list(c("JR", "FR", "MR", "AR", "MYR", "JR", "JLR", "AGR", "SR", "OR", "NR", "DR", "JA", "FA","MA", "AA", "MYA", "JA", "JLA","AGA", "SA", "OA","NA", "DA")), v.names="Precipitation", timevar="Month")
data_stacked <- stack(data, select = c("JR", "FR", "MR", "AR", "MYR", "JR", "JLR", "AGR", "SR", "OR", "NR", "DR", "JA", "FA","MA", "AA", "MYA", "JA", "JLA","AGA", "SA", "OA","NA", "DA"))
but their result is not quite expected - they are giving Jan values of all years, and then Feb values of all years, and then March values of all years, and etc. But I want to structure them in an proper monthly manner for each Year for each ID existing in the entire dataset.
How to achieve this in R?
Here's a base reshape approach:
res <- reshape(mydf, direction="long", varying=list(5:16, 17:28), v.names=c("R", "A"), times = month.name, timevar = "Month")
res[with(res, order(ID, -L1, L2, Year)), -8]
Here's a possible solution using the devel version of data.table
library(data.table) ## v >= 1.9.5
res <- melt(setDT(df),
id = 1:4, ## id variables
measure = list(5:16, 17:ncol(df)), # a list of two groups of measure variables
variable = "Month", # The name of the additional variable
value = c("R", "A")) # The names of the grouped variables
setorder(res, ID, -L1, L2, Year) ## Reordering the data to match the desired output
res[, Month := month.abb[Month]] ## You don't really need this part as you already have the months numbers
# ID L1 L2 Year Month R A
# 1: 1234 89 65 2003 Jan 11 76
# 2: 1234 89 65 2003 Feb 34 86
# 3: 1234 89 65 2003 Mar 6 30
# 4: 1234 89 65 2003 Apr 7 76
# 5: 1234 89 65 2003 May 8 43
# 6: 1234 89 65 2003 Jun 90 67
# 7: 1234 89 65 2003 Jul 65 13
# 8: 1234 89 65 2003 Aug 54 98
# 9: 1234 89 65 2003 Sep 3 67
# 10: 1234 89 65 2003 Oct 22 0
# 11: 1234 89 65 2003 Nov 55 127
# 12: 1234 89 65 2003 Dec 66 74
# 13: 1234 45 76 2004 Jan 67 3
# 14: 1234 45 76 2004 Feb 87 2
# 15: 1234 45 76 2004 Mar 98 65
# 16: 1234 45 76 2004 Apr 5 78
# 17: 1234 45 76 2004 May 4 44
# 18: 1234 45 76 2004 Jun 3 53
# 19: 1234 45 76 2004 Jul 77 67
# 20: 1234 45 76 2004 Aug 8 98
# 21: 1234 45 76 2004 Sep 99 79
# 22: 1234 45 76 2004 Oct 76 53
# 23: 1234 45 76 2004 Nov 56 23
# 24: 1234 45 76 2004 Dec 4 65
Installation instructions:
library(devtools)
install_github("Rdatatable/data.table", build_vignettes = FALSE)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With