I am new to deep learning and I want to use a pretrained (EAST) model to serve from the AI Platform Serving, I have these files made available by the developer:
I want to convert it into the TensorFlow .pb
format. Is there a way to do it? I have taken the model from here
The full code is available here.
I have looked up here and it shows the following code to convert it:
From tensorflow/models/research/
INPUT_TYPE=image_tensor
PIPELINE_CONFIG_PATH={path to pipeline config file}
TRAINED_CKPT_PREFIX={path to model.ckpt}
EXPORT_DIR={path to folder that will be used for export}
python object_detection/export_inference_graph.py \
--input_type=${INPUT_TYPE} \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} \
--trained_checkpoint_prefix=${TRAINED_CKPT_PREFIX} \
--output_directory=${EXPORT_DIR}
I am unable to figure out what value to pass:
The Checkpoint file is a VSAM KSDS that contains checkpoint information generated by the DTF during execution of a copy operation. The Checkpoint file consists of variable length records, one per Process that has checkpointing specified. The average record length is 256 bytes.
Here's the code to convert the checkpoint to SavedModel
import os
import tensorflow as tf
trained_checkpoint_prefix = 'models/model.ckpt-49491'
export_dir = os.path.join('export_dir', '0')
graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
# Restore from checkpoint
loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
loader.restore(sess, trained_checkpoint_prefix)
# Export checkpoint to SavedModel
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess,
[tf.saved_model.TRAINING, tf.saved_model.SERVING],
strip_default_attrs=True)
builder.save()
Following the answer of @Puneith Kaul, here is the syntax for tensorflow version 1.7:
import os
import tensorflow as tf
export_dir = 'export_dir'
trained_checkpoint_prefix = 'models/model.ckpt'
graph = tf.Graph()
loader = tf.train.import_meta_graph(trained_checkpoint_prefix + ".meta" )
sess = tf.Session()
loader.restore(sess,trained_checkpoint_prefix)
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.TRAINING, tf.saved_model.tag_constants.SERVING], strip_default_attrs=True)
builder.save()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With