I have two csr_matrix
, uniFeature
and biFeature
.
I want a new matrix Feature = [uniFeature, biFeature]
. But if I directly concatenate them this way, there's an error that says the matrix Feature
is a list. How can I achieve the matrix concatenation and still get the same type of matrix, i.e. a csr_matrix
?
And it doesn't work if I do this after the concatenation: Feature = csr_matrix(Feature)
It gives the error:
Traceback (most recent call last):
File "yelpfilter.py", line 91, in <module>
Feature = csr_matrix(Feature)
File "c:\python27\lib\site-packages\scipy\sparse\compressed.py", line 66, in __init__
self._set_self( self.__class__(coo_matrix(arg1, dtype=dtype)) )
File "c:\python27\lib\site-packages\scipy\sparse\coo.py", line 185, in __init__
self.row, self.col = M.nonzero()
TypeError: __nonzero__ should return bool or int, returned numpy.bool_
The scipy.sparse
module includes the functions hstack
and vstack
.
For example:
In [44]: import scipy.sparse as sp
In [45]: c1 = sp.csr_matrix([[0,0,1,0],
...: [2,0,0,0],
...: [0,0,0,0]])
In [46]: c2 = sp.csr_matrix([[0,3,4,0],
...: [0,0,0,5],
...: [6,7,0,8]])
In [47]: h = sp.hstack((c1, c2), format='csr')
In [48]: h
Out[48]:
<3x8 sparse matrix of type '<type 'numpy.int64'>'
with 8 stored elements in Compressed Sparse Row format>
In [49]: h.A
Out[49]:
array([[0, 0, 1, 0, 0, 3, 4, 0],
[2, 0, 0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 6, 7, 0, 8]])
In [50]: v = sp.vstack((c1, c2), format='csr')
In [51]: v
Out[51]:
<6x4 sparse matrix of type '<type 'numpy.int64'>'
with 8 stored elements in Compressed Sparse Row format>
In [52]: v.A
Out[52]:
array([[0, 0, 1, 0],
[2, 0, 0, 0],
[0, 0, 0, 0],
[0, 3, 4, 0],
[0, 0, 0, 5],
[6, 7, 0, 8]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With