Let say I have the following dataframe:
agentName|original_dt|parsed_dt| user|text|
+----------+-----------+---------+-------+----+
|qwertyuiop| 0| 0|16102.0| 0|
I wish to create a new dataframe with one more column that has the concatenation of all the elements of the row:
agentName|original_dt|parsed_dt| user|text| newCol
+----------+-----------+---------+-------+----+
|qwertyuiop| 0| 0|16102.0| 0| [qwertyuiop, 0,0, 16102, 0]
Note: This is a just an example. The number of columns and names of them is not known. It is dynamic.
TL;DR Use struct
function with Dataset.columns
operator.
Quoting the scaladoc of struct function:
struct(colName: String, colNames: String*): Column Creates a new struct column that composes multiple input columns.
There are two variants: string-based for column names or using Column
expressions (that gives you more flexibility on the calculation you want to apply on the concatenated columns).
From Dataset.columns:
columns: Array[String] Returns all column names as an array.
Your case would then look as follows:
scala> df.withColumn("newCol",
struct(df.columns.head, df.columns.tail: _*)).
show(false)
+----------+-----------+---------+-------+----+--------------------------+
|agentName |original_dt|parsed_dt|user |text|newCol |
+----------+-----------+---------+-------+----+--------------------------+
|qwertyuiop|0 |0 |16102.0|0 |[qwertyuiop,0,0,16102.0,0]|
+----------+-----------+---------+-------+----+--------------------------+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With