c1=["q","q","q","q","q","q"]
c2=["x","x","x","x","x","x"]
c3=["w","w","w","w","w","w"]
ca=["c","e","a","d"]
cb=["y","z","s","f"]
cc=["y","z","s","f"]
df1=pd.DataFrame(c1, columns=['c1'])
df2=pd.DataFrame(c2, columns=['c2'])
df3=pd.DataFrame(c3, columns=['c3'])
df4=pd.DataFrame(ca, columns=['ca'])
df5=pd.DataFrame(cb, columns=['cb'])
df6=pd.DataFrame(cc, columns=['cc'])
df7=pd.concat([df1,df2,df3,df4,df5,df6],axis=1)
df7
What I want to do is concatenate lists (different lengths) and make dataframe. I couldn't realize it using zip()s. Is there any easy way of that?
You can feed concat
with a list of series instead of a list of dataframes. A dictionary is a good idea for a variable number of variables, and allows you to store your future column names as keys.
d = {'c1': c1, 'c2': c2, 'c3': c3, 'ca': ca, 'cb': cb, 'cc': cc}
df = pd.concat([pd.Series(v, name=k) for k, v in d.items()], axis=1)
print(df)
c1 c2 c3 ca cb cc
0 q x w c y y
1 q x w e z z
2 q x w a s s
3 q x w d f f
4 q x w NaN NaN NaN
5 q x w NaN NaN NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With