Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to compute jaccard similarity from a pandas dataframe

Tags:

I have a dataframe as follows: the shape of the frame is (1510, 1399). The columns represents products, the rows represents the values (0 or 1) assigned by an user for a given product. How can I can compute a jaccard_similarity_score?

enter image description here

I created a placeholder dataframe listing product vs. product

data_ibs = pd.DataFrame(index=data_g.columns,columns=data_g.columns) 

I am not sure how to iterate though data_ibs to compute similarities.

for i in range(0,len(data_ibs.columns)) :     # Loop through the columns for each column     for j in range(0,len(data_ibs.columns)) : ......... 
like image 341
kitchenprinzessin Avatar asked May 03 '16 11:05

kitchenprinzessin


Video Answer


1 Answers

Short and vectorized (fast) answer:

Use 'hamming' from the pairwise distances of scikit learn:

from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df.T, metric = "hamming") # optionally convert it to a DataFrame jac_sim = pd.DataFrame(jac_sim, index=df.columns, columns=df.columns) 

Explanation:

Assume this is your dataset:

import pandas as pd import numpy as np np.random.seed(0) df = pd.DataFrame(np.random.binomial(1, 0.5, size=(100, 5)), columns=list('ABCDE')) print(df.head())     A  B  C  D  E 0  1  1  1  1  0 1  1  0  1  1  0 2  1  1  1  1  0 3  0  0  1  1  1 4  1  1  0  1  0 

Using sklearn's jaccard_score, similarity between column A and B is:

from sklearn.metrics import jaccard_score print(jaccard_score(df['A'], df['B'])) 0.43 

This is the number of rows that have the same value over total number of rows, 100.

As far as I know, there is no pairwise version of the jaccard_score but there are pairwise versions of distances.

However, SciPy defines Jaccard distance as follows:

Given two vectors, u and v, the Jaccard distance is the proportion of those elements u[i] and v[i] that disagree where at least one of them is non-zero.

So it excludes the rows where both columns have 0 values. jaccard_score doesn't. Hamming distance, on the other hand, is inline with the similarity definition:

The proportion of those vector elements between two n-vectors u and v which disagree.

So if you want to calculate jaccard_score, you can use 1 - hamming:

from sklearn.metrics.pairwise import pairwise_distances print(1 - pairwise_distances(df.T, metric = "hamming"))  array([[ 1.  ,  0.43,  0.61,  0.55,  0.46],        [ 0.43,  1.  ,  0.52,  0.56,  0.49],        [ 0.61,  0.52,  1.  ,  0.48,  0.53],        [ 0.55,  0.56,  0.48,  1.  ,  0.49],        [ 0.46,  0.49,  0.53,  0.49,  1.  ]]) 

In a DataFrame format:

jac_sim = 1 - pairwise_distances(df.T, metric = "hamming") jac_sim = pd.DataFrame(jac_sim, index=df.columns, columns=df.columns) # jac_sim = np.triu(jac_sim) to set the lower diagonal to zero # jac_sim = np.tril(jac_sim) to set the upper diagonal to zero        A     B     C     D     E A  1.00  0.43  0.61  0.55  0.46 B  0.43  1.00  0.52  0.56  0.49 C  0.61  0.52  1.00  0.48  0.53 D  0.55  0.56  0.48  1.00  0.49 E  0.46  0.49  0.53  0.49  1.00 

You can do the same by iterating over combinations of columns but it will be much slower.

import itertools sim_df = pd.DataFrame(np.ones((5, 5)), index=df.columns, columns=df.columns) for col_pair in itertools.combinations(df.columns, 2):     sim_df.loc[col_pair] = sim_df.loc[tuple(reversed(col_pair))] = jaccard_score(df[col_pair[0]], df[col_pair[1]]) print(sim_df)       A     B     C     D     E A  1.00  0.43  0.61  0.55  0.46 B  0.43  1.00  0.52  0.56  0.49 C  0.61  0.52  1.00  0.48  0.53 D  0.55  0.56  0.48  1.00  0.49 E  0.46  0.49  0.53  0.49  1.00 
like image 56
ayhan Avatar answered Sep 23 '22 02:09

ayhan