When I learn State Monad
, I'm not sure how to compose two functions with different State
return types.
State Monad definition:
case class State[S, A](runState: S => (S, A)) {
def flatMap[B](f: A => State[S, B]): State[S, B] = {
State(s => {
val (s1, a) = runState(s)
val (s2, b) = f(a).runState(s1)
(s2, b)
})
}
def map[B](f: A => B): State[S, B] = {
flatMap(a => {
State(s => (s, f(a)))
})
}
}
Two different State types:
type AppendBang[A] = State[Int, A]
type AddOne[A] = State[String, A]
Two methods with differnt State return types:
def addOne(n: Int): AddOne[Int] = State(s => (s + ".", n + 1))
def appendBang(str: String): AppendBang[String] = State(s => (s + 1, str + " !!!"))
Define a function to use the two functions above:
def myAction(n: Int) = for {
a <- addOne(n)
b <- appendBang(a.toString)
} yield (a, b)
And I hope to use it like this:
println(myAction(1))
The problem is myAction
is not compilable, it reports some error like this:
Error:(14, 7) type mismatch;
found : state_monad.State[Int,(Int, String)]
required: state_monad.State[String,?]
b <- appendBang(a.toString)
^
How can I fix it? Do I have to define some Monad transformers?
Update: The question may be not clear, let me give an example
Say I want to define another function, which uses addOne
and appendBang
internally. Since they all need existing states, I have to pass some to it:
def myAction(n: Int)(addOneState: String, appendBangState: Int): ((String, Int), String) = {
val (addOneState2, n2) = addOne(n).runState(addOneState)
val (appendBangState2, n3) = appendBang(n2.toString).runState(appendBangState)
((addOneState2, appendBangState2), n3)
}
I have to run addOne
and appendBang
one by one, passing and getting the states and result manually.
Although I found it can return another State
, the code is not improved much:
def myAction(n: Int): State[(String, Int), String] = State {
case (addOneState: String, appendBangState: Int) =>
val (addOneState2, n2) = addOne(n).runState(addOneState)
val (appendBangState2, n3) = appendBang(n2.toString).runState( appendBangState)
((addOneState2, appendBangState2), n3)
}
Since I'm not quite familiar with them, just wondering is there any way to improve it. The best hope is that I can use for
comprehension, but not sure if that's possible
Like I mentioned in my first comment, it will be impossible to use a for comprehension to do what you want, because it can not change the type of the state (S
).
Remember that a for comprehension can be translated to a combination of flatMaps
, withFilter
and one map
. If we look at your State.flatMap
, it takes a function f
to change a State[S,A]
into State[S, B]
. We can use flatMap
and map
(and thus a for comprehension) to chain together operations on the same state, but we can't change the type of the state in this chain.
We could generalize your last definition of myAction
to combine, compose, ... two functions using state of a different type. We can try to implement this generalized compose method directly in our State
class (although this is probably so specific, it probably doesn't belong in State
). If we look at State.flatMap
and myAction
we can see some similarities:
runState
on our existing State
instance.runState
againIn myAction
we first use the result n2
to create a State[Int, String]
(AppendBang[String]
or State[S2, B]
) using the second function (appendBang
or f
) on which we then call runState
. But our result n2
is of type String
(A
) and our function appendBang
needs an Int
(B
) so we need a function to convert A
into B
.
case class State[S, A](runState: S => (S, A)) {
// flatMap and map
def compose[B, S2](f: B => State[S2, B], convert: A => B) : State[(S, S2), B] =
State( ((s: S, s2: S2) => {
val (sNext, a) = runState(s)
val (s2Next, b) = f(convert(a)).runState(s2)
((sNext, s2Next), b)
}).tupled)
}
You then could define myAction
as :
def myAction(i: Int) = addOne(i).compose(appendBang, _.toString)
val twoStates = myAction(1)
// State[(String, Int),String] = State(<function1>)
twoStates.runState(("", 1))
// ((String, Int), String) = ((.,2),2 !!!)
If you don't want this function in your State
class you can create it as an external function :
def combineStateFunctions[S1, S2, A, B](
a: A => State[S1, A],
b: B => State[S2, B],
convert: A => B
)(input: A): State[(S1, S2), B] = State(
((s1: S1, s2: S2) => {
val (s1Next, temp) = a(input).runState(s1)
val (s2Next, result) = b(convert(temp)).runState(s2)
((s1Next, s2Next), result)
}).tupled
)
def myAction(i: Int) =
combineStateFunctions(addOne, appendBang, (_: Int).toString)(i)
Edit : Bergi's idea to create two functions to lift a State[A, X]
or a State[B, X]
into a State[(A, B), X]
.
object State {
def onFirst[A, B, X](s: State[A, X]): State[(A, B), X] = {
val runState = (a: A, b: B) => {
val (nextA, x) = s.runState(a)
((nextA, b), x)
}
State(runState.tupled)
}
def onSecond[A, B, X](s: State[B, X]): State[(A, B), X] = {
val runState = (a: A, b: B) => {
val (nextB, x) = s.runState(b)
((a, nextB), x)
}
State(runState.tupled)
}
}
This way you can use a for comprehension, since the type of the state stays the same ((A, B)
).
def myAction(i: Int) = for {
x <- State.onFirst(addOne(i))
y <- State.onSecond(appendBang(x.toString))
} yield y
myAction(1).runState(("", 1))
// ((String, Int), String) = ((.,2),2 !!!)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With