I am using Lodash in my Angular project and I was wondering if there is a better way to write the following code:
$scope.new_arr = _.map(arr1, function(item){
return _.assign(item, {new_id: _.find(arr2, {id: item.id})});
});
$scope.new_arr = _.filter($scope.new_arr, function (item) {
return item.new_id !== undefined;
});
I am trying to combine values from one array to same objects in other array, and I want to ignore the objects that not appear in both arrays (it is something like join or left outer join in the sql language).
Here is a fiddle with an example of this code: Click me!
i think is better to use chaining
$scope.new_arr = _.chain(arr1)
.map(function(item) {
return _.merge(
{}, // to avoid mutations
item,
{new_id: _.find(arr2, {id: item.id})}
);
})
.filter('new_id')
.value();
https://jsfiddle.net/3xjdqsjs/6/
try this:
$scope.getItemById = (array, id) => {
return array.find(item => item.id == id);
};
$scope.mergeArrays = () => {
let items_with_ids = arr1.filter(item => !_.isNil($scope.getItemById(arr2,item.id)));
return items_with_ids.map(item => _.assign(item, {new_id: $scope.getItemById(arr2,item.id)}));
};
The answers provided here are all runtime of O(n^2), because they first run an outer loop on the first array, with an inner loop on the second array. You can instead run this in O(n). First, create a hashmap of all the ids in arr2 in a single loop; this will allow us an order 1 lookup. In the second loop on arr1, check this hashmap to determine if those items exist with O(n). Total Complexity is n + n = 2n, which is just O(n).
// provision some test arrays
var arr1 = [
{
id: 2
},
{
id: 4
},
{
id: 6
}
]
var arr2 = [
{
id: 3
},
{
id: 4
},
{
id: 5
},
{
id: 6
}
]
// First, we create a map of the ids of arr2 with the items. Complexity: O(n)
var mapIdsToArr2Items = _.reduce(arr2, function(accumulator, item) {
accumulator[item.id] = item;
return accumulator;
}, {});
// Next, we use reduce (instead of a _.map followed by a _.filter for slightly more performance.
// This is because with reduce, we loop once, whereas with map and filter,
// we loop twice). Complexity: O(n)
var combinedArr = _.reduce(arr1, function(accumulator, item) {
// Complexity: O(1)
if (mapIdsToArr2Items[item.id]) {
// There's a match/intersection! Arr1's item matches an item in arr 2. Include it
accumulator.push(item);
}
return accumulator;
}, []);
console.log(combinedArr)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With