The way I understand it, in creating a random forest, the algorithm bundles a bunch of randomly generated decision trees together, weighting them such that they fit the training data.
Is it reasonable to say that this average of forests could be simplified into a simple decision tree? And, if so - how can I access and present this tree?
What I'm looking to do here is extract the information in the tree to help identify both the leading attributes, their boundary values and placement in the tree. I'm assuming that such a tree would provide insight to a human (or computer heuristic) as to which attributes within a dataset provide the most insight into determining the target outcome.
This probably seems a naive question - and if so, please be patient, I'm new to this and want to get to a stage where I understand it sufficiently.
RandomForest uses bootstrap to create many training sets by sampling the data with replacement (bagging). Each bootstrapped set is very close to the original data, but slightly different, since it may have multiples of the some points and some other points in the original data will be missing. (This helps create a whole bunch of similar but different sets that as a whole represent the population your data came from, and allow better generalization)
Then it fits a DecisionTree to each set. However, what a regular DecisionTree does at each step, is to loop over each feature, find the best split for each feature, and in the end choose to do the split in the feature that produced the best one among all. In RandomForest, instead of looping over every feature to find the best split, you only try a random subsample at each step (default is sqrt(n_features)).
So, every tree in RandomForest is fit to a bootstrapped random training set. And at each branching step, it only looks at a subsample of features, so some of the branching will be good but not necessarily the ideal split. This means that each tree is a less than ideal fit to the original data. When you average the result of all these (sub-ideal) trees, though, you get a robust prediction. Regular DecisionTrees overfit the data, this two-way randomization (bagging and feature subsampling) allow them to generalize and a forest usually does a good job.
Here is the catch: While you can average out the output of each tree, you cannot really "average the trees" to get an "average tree". Since trees are a bunch of if-then statements that are chained, there is no way of taking these chains and coming up with a single chain that produces the result that's the same as averaged result from each chain. Each tree in the forest is different, even if same features show up, they show up in different places of the trees, which makes it impossible to combine. You cannot represent a RandomForest as a single tree.
There are two things you can do.
1) As RPresle mentioned, you can look at the .feature_importances_
attribute, which for each feature averages the splitting score from different trees. The idea is, while you can't get an average tree, you can quantify how much and how effectively each feature is used in the forest by averaging their score in each tree.
2) When I fit a RandomForest model and need to get some insight into what's happening, how the features are affecting the result, I also fit a single DecisionTree. Now, this model is usually not good at all by itself, it will easily be outperformed by the RandomForest and I wouldn't use it to predict anything, but by drawing and looking at the splits in this tree, combined with the .feature_importances_
of the forest, I usually get a pretty good idea of the big picture.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With