I have a df
:
>>> df
sales cash
STK_ID RPT_Date
000568 20120930 80.093 57.488
000596 20120930 32.585 26.177
000799 20120930 14.784 8.157
And want to change first row's index value from ('000568','20120930')
to ('000999','20121231')
. Final result will be:
>>> df
sales cash
STK_ID RPT_Date
000999 20121231 80.093 57.488
000596 20120930 32.585 26.177
000799 20120930 14.784 8.157
How to achieve this?
To reset the index in pandas, you simply need to chain the function . reset_index() with the dataframe object. On applying the . reset_index() function, the index gets shifted to the dataframe as a separate column.
You can rename (change) column/index names of pandas. DataFrame by using rename() , add_prefix() , add_suffix() , set_axis() methods or updating the columns / index attributes. You can also rename index names (labels) of pandas. Series in the same way.
If you want to keep the original index as a column, use reset_index() to reassign the index to a sequential number starting from 0 . You can change the index to a different column by using set_index() after reset_index() .
Use DataFrame.reset_index() function We can use DataFrame. reset_index() to reset the index of the updated DataFrame. By default, it adds the current row index as a new column called 'index' in DataFrame, and it will create a new row index as a range of numbers starting at 0.
With this setup:
import pandas as pd
import io
text = '''\
STK_ID RPT_Date sales cash
000568 20120930 80.093 57.488
000596 20120930 32.585 26.177
000799 20120930 14.784 8.157
'''
df = pd.read_csv(io.BytesIO(text), delimiter = ' ',
converters = {0:str})
df.set_index(['STK_ID','RPT_Date'], inplace = True)
The index, df.index
can be reassigned to a new MultiIndex
like this:
index = df.index
names = index.names
index = [('000999','20121231')] + df.index.tolist()[1:]
df.index = pd.MultiIndex.from_tuples(index, names = names)
print(df)
# sales cash
# STK_ID RPT_Date
# 000999 20121231 80.093 57.488
# 000596 20120930 32.585 26.177
# 000799 20120930 14.784 8.157
Or, the index could be made into columns, the values in the columns could be then reassigned, and then the columns returned to indices:
df.reset_index(inplace = True)
df.ix[0, ['STK_ID', 'RPT_Date']] = ('000999','20121231')
df = df.set_index(['STK_ID','RPT_Date'])
print(df)
# sales cash
# STK_ID RPT_Date
# 000999 20121231 80.093 57.488
# 000596 20120930 32.585 26.177
# 000799 20120930 14.784 8.157
Benchmarking with IPython %timeit
suggests reassigning the index (the first method, above) is significantly faster than resetting the index, modifying column values, and then setting the index again (the second method, above):
In [2]: %timeit reassign_index(df)
10000 loops, best of 3: 158 us per loop
In [3]: %timeit reassign_columns(df)
1000 loops, best of 3: 843 us per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With