I have a class structure similar to the following
class A
{
public:
A(void);
~A(void);
void DoSomething(int i)
{
std::cout << "Hello A" << i << std::endl;
}
};
class B : public A
{
public:
B(void);
~B(void);
void DoSomething(int i)
{
std::cout << "Hello B" << i << std::endl;
}
};
class Ad : public A
{
public:
Ad(void);
~Ad(void);
};
class Bd : public B
{
public:
Bd(void);
~Bd(void);
};
I want to store instances of the derived classes in a container (standard map) as a collection of A*, then iterate through the container and call methods for each instance.
#include "A.h"
#include "B.h"
#include "Ad.h"
#include "Bd.h"
#include <map>
int main(int argc, char** argv)
{
std::map<int,A*> objectmap;
objectmap[1] = new Ad();
objectmap[2] = new Bd();
for (std::map<int,A*>::iterator itrobject = objectmap.begin();
itrobject!=objectmap.end(); itrobject++)
{
itrobject->second->DoSomething(1);
}
return 0;
}
The above code produces the following output.
Hello A1
Hello A1
Where I was expecting
Hello A1
Hello B1
because I was expecting DoSomething in B to hide DoSomething in A, and because I am storing A pointers, I would expect no object slicing (and looking at the object pointer in the debugger shows that the object has not been sliced).
I have tried down casting and dynamic casting the pointer to B, but it slices away the data members of Bd.
Is there any way to call B::DoSomething without casting the pointer to Bd? And if not, if I have many derived classes of B (e.g. Bda, Bdb, Bdc etc), is there some way to use RTTI to know which derived class to cast it to?
When you refer to a derived class object using a pointer or a reference to the base class, you can call a virtual function for that object and execute the derived class's version of the function.
[19.4] Is it OK to convert a pointer from a derived class to its base class? Yes.
base (C# Reference)The base keyword is used to access members of the base class from within a derived class: Call a method on the base class that has been overridden by another method. Specify which base-class constructor should be called when creating instances of the derived class.
You could do something like this: class Base { public: Base() {} virtual ~Base() {} virtual void start() { startInternal(); } virtual void stop() { stopInternal(); } void doSomething() { startInternal(); // ... stopInternal(); } private: void startInternal() { // ... }
You need to make DoSomething()
a virtual
function in both classes to get the polymorphic behavior you're after:
virtual void DoSomething(int i) { ...
You don't need to implement virtual functions in every sub class, as shown in the following example:
#include <iostream>
class A {
public:
virtual void print_me(void) {
std::cout << "I'm A" << std::endl;
}
virtual ~A() {}
};
class B : public A {
public:
virtual void print_me(void) {
std::cout << "I'm B" << std::endl;
}
};
class C : public A {
};
int main() {
A a;
B b;
C c;
A* p = &a;
p->print_me();
p = &b;
p->print_me();
p = &c;
p->print_me();
return 0;
}
Output:
I'm A
I'm B
I'm A
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With