I have read multiple post similar to my question, but I still can't figure it out. I have a pandas df that looks like the following (for multiple days):
Out[1]:
price quantity
time
2016-06-08 09:00:22 32.30 1960.0
2016-06-08 09:00:22 32.30 142.0
2016-06-08 09:00:22 32.30 3857.0
2016-06-08 09:00:22 32.30 1000.0
2016-06-08 09:00:22 32.35 991.0
2016-06-08 09:00:22 32.30 447.0
...
To calculate the vwap I could do:
df['vwap'] = (np.cumsum(df.quantity * df.price) / np.cumsum(df.quantity))
However, I would like to start over every day (groupby), but I can't figure out how to make it work with a (lambda?) function.
df['vwap_day'] = df.groupby(df.index.date)['vwap'].apply(lambda ...
Speed is of essence. Would appreciate any help:)
Option 0
plain vanilla approach
def vwap(df):
q = df.quantity.values
p = df.price.values
return df.assign(vwap=(p * q).cumsum() / q.cumsum())
df = df.groupby(df.index.date, group_keys=False).apply(vwap)
df
price quantity vwap
time
2016-06-08 09:00:22 32.30 1960.0 32.300000
2016-06-08 09:00:22 32.30 142.0 32.300000
2016-06-08 09:00:22 32.30 3857.0 32.300000
2016-06-08 09:00:22 32.30 1000.0 32.300000
2016-06-08 09:00:22 32.35 991.0 32.306233
2016-06-08 09:00:22 32.30 447.0 32.305901
Option 1
Throwing in a little eval
df = df.assign(
vwap=df.eval(
'wgtd = price * quantity', inplace=False
).groupby(df.index.date).cumsum().eval('wgtd / quantity')
)
df
price quantity vwap
time
2016-06-08 09:00:22 32.30 1960.0 32.300000
2016-06-08 09:00:22 32.30 142.0 32.300000
2016-06-08 09:00:22 32.30 3857.0 32.300000
2016-06-08 09:00:22 32.30 1000.0 32.300000
2016-06-08 09:00:22 32.35 991.0 32.306233
2016-06-08 09:00:22 32.30 447.0 32.305901
I also used this method before but it's not working quite accurately if you're trying to limit the window period. Instead I found the TA python library to work really well: https://technical-analysis-library-in-python.readthedocs.io/en/latest/index.html
from ta.volume import VolumeWeightedAveragePrice
# ...
def vwap(dataframe, label='vwap', window=3, fillna=True):
dataframe[label] = VolumeWeightedAveragePrice(high=dataframe['high'], low=dataframe['low'], close=dataframe["close"], volume=dataframe['volume'], window=window, fillna=fillna).volume_weighted_average_price()
return dataframe
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With