I'm using dcast to transpose the following table
date event user_id
25-07-2020 Create 3455
25-07-2020 Visit 3567
25-07-2020 Visit 3567
25-07-2020 Add 3567
25-07-2020 Add 3678
25-07-2020 Add 3678
25-07-2020 Create 3567
24-07-2020 Edit 3871
I'm using dcast to transpose to have my events as columns and count user_id
dae_summ <- dcast(ahoy_events, date ~ event, value.var="user_id")
But I'm not getting unique user id's. its counting the same user_id multiple times. What can I do to get one user_id counted only one time for the same date and event.
We could use uniqueN
from data.table
library(data.table)
dcast(setDT(ahoy_events), date ~ event, fun.aggregate = uniqueN)
# date Add Create Edit Visit
#1: 24-07-2020 0 0 1 0
#2: 25-07-2020 2 2 0 1
Or using pivot_wider
from tidyr
with values_fn
specified as n_distinct
library(tidyr)
library(dplyr)
ahoy_events %>%
pivot_wider(names_from = event, values_from = user_id,
values_fn = list(user_id = n_distinct), values_fill = list(user_id = 0))
# A tibble: 2 x 5
# date Create Visit Add Edit
# <chr> <int> <int> <int> <int>
#1 25-07-2020 2 1 2 0
#2 24-07-2020 0 0 0 1
ahoy_events <- structure(list(date = c("25-07-2020", "25-07-2020", "25-07-2020",
"25-07-2020", "25-07-2020", "25-07-2020", "25-07-2020", "24-07-2020"
), event = c("Create", "Visit", "Visit", "Add", "Add", "Add",
"Create", "Edit"), user_id = c(3455L, 3567L, 3567L, 3567L, 3678L,
3678L, 3567L, 3871L)), class = "data.frame", row.names = c(NA,
-8L))
You can try:
library(reshape2)
#Data
df <- structure(list(date = c("25-07-2020", "25-07-2020", "25-07-2020",
"25-07-2020", "25-07-2020", "25-07-2020", "25-07-2020", "24-07-2020"
), event = c("Create", "Visit", "Visit", "Add", "Add", "Add",
"Create", "Edit"), user_id = c(3455L, 3567L, 3567L, 3567L, 3678L,
3678L, 3567L, 3871L)), class = "data.frame", row.names = c(NA,
-8L))
#New code
dae_summ <- dcast(df, date ~ event, value.var="user_id",fun.aggregate = function(x) length(unique(x)))
date Add Create Edit Visit
1 24-07-2020 0 0 1 0
2 25-07-2020 2 2 0 1
Your code produces this:
date Add Create Edit Visit
1 24-07-2020 0 0 1 0
2 25-07-2020 3 2 0 2
So there is a difference.
Using the reshape2
package, you can utilize the following:
library(reshape2)
Data:
zz <- "date event user_id
25-07-2020 Create 3455
25-07-2020 Visit 3567
25-07-2020 Visit 3567
25-07-2020 Add 3567
25-07-2020 Add 3678
25-07-2020 Add 3678
25-07-2020 Create 3567
24-07-2020 Edit 3871"
data <- read.table(text=zz, header = TRUE)
Code:
data %>%
dcast(user_id ~ event, value.var="user_id",fun.aggregate = function(x) length(unique(x)))
Output:
date Add Create Edit Visit
<fctr> <int> <int> <int> <int>
24-07-2020 0 0 1 0
25-07-2020 2 2 0 1
Created on 2020-07-25 by the reprex package (v0.3.0)
A base R option using reshape
out <- replace(
u <- reshape(
unique(transform(ahoy_events, user_id = ave(user_id, event, date, FUN = function(x) length(unique(x))))),
direction = "wide",
idvar = "date",
timevar = "event"
),
is.na(u),
0
)
such that
> out
date user_id.Create user_id.Visit user_id.Add user_id.Edit
1 25-07-2020 2 1 2 0
8 24-07-2020 0 0 0 1
data
"25-07-2020", "25-07-2020", "25-07-2020",
"25-07-2020", "25-07-2020", "25-07-2020", "25-07-2020", "24-07-2020"
), event = c(
"Create", "Visit", "Visit", "Add", "Add", "Add",
"Create", "Edit"
), user_id = c(
3455L, 3567L, 3567L, 3567L, 3678L,
3678L, 3567L, 3871L
)), class = "data.frame", row.names = c(
NA,
-8L
))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With