I have data arranged like this in R:
indv time val
A 6 5
A 10 10
A 12 7
B 8 4
B 10 3
B 15 9
For each individual (indv
) at each time, I want to calculate the change in value (val
) from the initial time. So I would end up with something like this:
indv time val val_1 val_change
A 6 5 5 0
A 10 10 5 5
A 12 7 5 2
B 8 4 4 0
B 10 3 4 -1
B 15 9 4 5
Can anyone tell me how I might do this? I can use
ddply(df, .(indv), function(x)x[which.min(x$time), ])
to get a table like
indv time val
A 6 5
B 8 4
However, I cannot figure out how to make a column val_1
where the minimum values are matched up for each individual. However, if I can do that, I should be able to add column val_change
using something like:
df['val_change'] = df['val_1'] - df['val']
EDIT: two excellent methods were posted below, however both rely on my time column being sorted so that small time values are on top of high time values. I'm not sure this will always be the case with my data. (I know I can sort first in Excel, but I'm trying to avoid that.) How could I deal with a case when the table appears like this:
indv time value
A 10 10
A 6 5
A 12 7
B 8 4
B 10 3
B 15 9
diff() method in base R is used to find the difference among all the pairs of consecutive rows in the R dataframe. It returns a vector with the length equivalent to the length of the input column – 1.
diff() function in R Language is used to find the difference between each consecutive pair of elements of a vector.
Here is a data.table
solution that will be memory efficient as it is setting by reference within the data.table. Setting the key will sort by the key variables
library(data.table)
DT <- data.table(df)
# set key to sort by indv then time
setkey(DT, indv, time)
DT[, c('val1','change') := list(val[1], val - val[1]),by = indv]
# And to show it works....
DT
## indv time val val1 change
## 1: A 6 5 5 0
## 2: A 10 10 5 5
## 3: A 12 7 5 2
## 4: B 8 4 4 0
## 5: B 10 3 4 -1
## 6: B 15 9 4 5
Here's a plyr solution using ddply
ddply(df, .(indv), transform,
val_1 = val[1],
change = (val - val[1]))
indv time val val_1 change
1 A 6 5 5 0
2 A 10 10 5 5
3 A 12 7 5 2
4 B 8 4 4 0
5 B 10 3 4 -1
6 B 15 9 4 5
To get your second table try this:
ddply(df, .(indv), function(x) x[which.min(x$time), ])
indv time val
1 A 6 5
2 B 8 4
To deal with unsorted data, like the one you posted in your edit try the following
unsort <- read.table(text="indv time value
A 10 10
A 6 5
A 12 7
B 8 4
B 10 3
B 15 9", header=T)
do.call(rbind, lapply(split(unsort, unsort$indv),
function(x) x[order(x$time), ]))
indv time value
A.2 A 6 5
A.1 A 10 10
A.3 A 12 7
B.4 B 8 4
B.5 B 10 3
B.6 B 15 9
Now you can apply the procedure described above to this sorted dataframe
A shorter way to sort your dataframe is using sortBy
function from doBy package
library(doBy)
orderBy(~ indv + time, unsort)
indv time value
2 A 6 5
1 A 10 10
3 A 12 7
4 B 8 4
5 B 10 3
6 B 15 9
You can even sort your df using ddply
ddply(unsort, .(indv, time), sort)
value time indv
1 5 6 A
2 10 10 A
3 7 12 A
4 4 8 B
5 3 10 B
6 9 15 B
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With