I have a df that contains multiple weekly snapshots of JIRA tickets. I want to calculate the YTD counts of tickets.
the df looks like this:
pointInTime ticketId
2008-01-01 111
2008-01-01 222
2008-01-01 333
2008-01-07 444
2008-01-07 555
2008-01-07 666
2008-01-14 777
2008-01-14 888
2008-01-14 999
So if I df.groupby(['pointInTime'])['ticketId'].count()
I can get the count of Ids in every snaphsots. But what I want to achieve is calculate the cumulative sum.
and have a df looks like this:
pointInTime ticketId cumCount
2008-01-01 111 3
2008-01-01 222 3
2008-01-01 333 3
2008-01-07 444 6
2008-01-07 555 6
2008-01-07 666 6
2008-01-14 777 9
2008-01-14 888 9
2008-01-14 999 9
so for 2008-01-07
number of ticket would be count of 2008-01-07
+ count of 2008-01-01
.
Using pandas groupby count() You can also use the pandas groupby count() function which gives the “count” of values in each column for each group. For example, let's group the dataframe df on the “Team” column and apply the count() function. We get a dataframe of counts of values for each group and each column.
The cumsum() method returns a DataFrame with the cumulative sum for each row. The cumsum() method goes through the values in the DataFrame, from the top, row by row, adding the values with the value from the previous row, ending up with a DataFrame where the last row contains the sum of all values for each column.
You can use pandas DataFrame. groupby(). count() to group columns and compute the count or size aggregate, this calculates a rows count for each group combination.
Use GroupBy.count
and cumsum
, then map
the result back to "pointInTime":
df['cumCount'] = (
df['pointInTime'].map(df.groupby('pointInTime')['ticketId'].count().cumsum()))
df
pointInTime ticketId cumCount
0 2008-01-01 111 3
1 2008-01-01 222 3
2 2008-01-01 333 3
3 2008-01-07 444 6
4 2008-01-07 555 6
5 2008-01-07 666 6
6 2008-01-14 777 9
7 2008-01-14 888 9
8 2008-01-14 999 9
I am using value_counts
df.pointInTime.map(df.pointInTime.value_counts().sort_index().cumsum())
Out[207]:
0 3
1 3
2 3
3 6
4 6
5 6
6 9
7 9
8 9
Name: pointInTime, dtype: int64
Or
pd.Series(np.arange(len(df))+1,index=df.index).groupby(df['pointInTime']).transform('last')
Out[216]:
0 3
1 3
2 3
3 6
4 6
5 6
6 9
7 9
8 9
dtype: int32
Here's an approach transforming with the size
and multiplying by the result of taking pd.factorize
on pointInTime
:
df['cumCount'] = (df.groupby('pointInTime').ticketId
.transform('size')
.mul(pd.factorize(df.pointInTime)[0]+1))
pointInTime ticketId cumCount
0 2008-01-01 111 3
1 2008-01-01 222 3
2 2008-01-01 333 3
3 2008-01-07 444 6
4 2008-01-07 555 6
5 2008-01-07 666 6
6 2008-01-14 777 9
7 2008-01-14 888 9
8 2008-01-14 999 9
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With