if the input is an array, where null
means no node.
input:
[1, 2, 3, null, 5, null, 7]
Please assume that I have already checked the input.
For each array[i]
, its parents array[i / 2]
will not be null
(recursively, so root can not be null
).
How to build a tree with such logic relation:
1
/ \
2 3
\ \
5 7
each node should be represented by a TreeNode
object:
class TreeNode {
public:
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
I found a blog here where a complete tree was built
but if the tree is incomplete as mentioned above, how to do it neatly and efficiently ?
Test data:
[input array]
[-64,12,18,-4,-53,null,76,null,-51,null,null,-93,3,null,-31,47,null,3,53,-81,33,4,null,-51,-44,-60,11,null,null,null,null,78,null,-35,-64,26,-81,-31,27,60,74,null,null,8,-38,47,12,-24,null,-59,-49,-11,-51,67,null,null,null,null,null,null,null,-67,null,-37,-19,10,-55,72,null,null,null,-70,17,-4,null,null,null,null,null,null,null,3,80,44,-88,-91,null,48,-90,-30,null,null,90,-34,37,null,null,73,-38,-31,-85,-31,-96,null,null,-18,67,34,72,null,-17,-77,null,56,-65,-88,-53,null,null,null,-33,86,null,81,-42,null,null,98,-40,70,-26,24,null,null,null,null,92,72,-27,null,null,null,null,null,null,-67,null,null,null,null,null,null,null,-54,-66,-36,null,-72,null,null,43,null,null,null,-92,-1,-98,null,null,null,null,null,null,null,39,-84,null,null,null,null,null,null,null,null,null,null,null,null,null,-93,null,null,null,98]
I think this example can explain what's in your mind .
array : [5,4,8,11,null,17,4,7,null,null,null,5]
Tree :
5
/ \
4 8
/ / \
11 17 4
/ /
7 5
All answer above are regard input array as a full tree. So left.child=2idx+1 , right.child = 2idx+2 but is actually it's wrong . beacuse those
[5,4,8,11,null,17,4,7,null,null,null,5]
[5,4,8,11,null,17,4,7,null,null,null,null,null,5,null]
are different
here is my solution
public static TreeNode createTree(Integer[] array) {
if (array == null || array.length==0) {
return null;
}
Queue<TreeNode> treeNodeQueue = new LinkedList<>();
Queue<Integer> integerQueue = new LinkedList<>();
for (int i = 1; i < array.length; i++) {
integerQueue.offer(array[i]);
}
TreeNode treeNode = new TreeNode(array[0]);
treeNodeQueue.offer(treeNode);
while (!integerQueue.isEmpty()){
Integer leftVal = integerQueue.isEmpty() ? null : integerQueue.poll();
Integer rightVal = integerQueue.isEmpty() ? null : integerQueue.poll();
TreeNode current = treeNodeQueue.poll();
if (leftVal !=null) {
TreeNode left = new TreeNode(leftVal);
current.left = left;
treeNodeQueue.offer(left);
}
if (rightVal !=null){
TreeNode right = new TreeNode(rightVal);
current.right = right;
treeNodeQueue.offer(right);
}
}
return treeNode;
}
When implementing a binary tree as an array it helps to have a clear visualization of how the two representations mirror one another, and review the mathematical structure that underlines the relationship.
If we consider 0-indexed arrays the mathematical relation can be broken down as such,
For the i:th
node (i
is the array index) we have that (verify)
2i + 1
2(i + 1)
floor((i-1)/2)
So, for the binary tree
if we let -
denote null
, is represented as such
[0:a, 1:b, 2:c, 3:d, 4:e, 5:-, 6:-, 7:-, 8:-, 9:g, 10:-, 11:-, 12:-, 13:-, 14:-]
So now to create the OO representation from the array you simply apply these indexing rules. So, since you know that the root node is a
then we get its children at:
2*0 + 1 = 1 => b
2*(0 + 1) = 2 => c
for (int idx = 0; 2*(idx + 1) < len(arr); idx++) {
if (arr[idx] == null) {
// There is no node to add for this index
continue;
}
TreeNode t = null;
if (idx == 0) {
// Root node case
t = TreeNode(val: arr[idx]);
binary_tree.add(id: idx, node: t);
}
// We do not know if these exist yet
int left_idx = 2*idx + 1;
int right_idx = 2*(idx + 1);
if (left_idx >= len(arr)) {
// left_idx is out of bounds with respect to the array,
// and by extension so would the right node be
continue;
}
TreeNode left = null;
TreeNode right = null;
if (arr[left_idx] != null) {
// This node has never been encountered before
// and it is non-null so it must be created.
//
// Since we know we have a root node then there is
// no need to check if the tree already contains this
// node, it simply is not possible. Ditto for the right
// node.
left = TreeNode(val: arr[left_idx]);
binary_tree.add(id: left_idx, node: left);
}
if (right_idx >= len(arr)) {
// There cannot be a right child
continue;
}
if (arr[right_idx] != null) {
// This node has never been encountered before
// and it is non-null so it must be created.
right = TreeNode(val: arr[right_idx]);
binary_tree.add(id: right_idx, right);
}
// It does not matter if left or right is null
t.set_left(left)
t.set_right(right)
}
Just use recursion to traverse the nodes using the index of the array and use Integer to allow null.
private TreeNode array2Tree(Integer[] data,TreeNode root, int index){
if(index >= data.length){
return root;
}
if(data[index] != null){
TreeNode temp = new TreeNode(data[index]);
root = temp;
root.left = array2Tree(data,root.left,2*index+1);
root.right = array2Tree(data,root.right,2*index+2);
}
return root;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With