I have a Multindexed Pandas DataFrame that looks like this:
import pandas as pd
df = pd.DataFrame({
    'Values':[1, 3, 4, 8, 5, 2, 9, 0, 2],
    'A':['A1', 'A1', 'A1', 'A1', 'A2', 'A2', 'A3', 'A3', 'A3'],
    'B':['foo', 'bar', 'fab', 'baz', 'foo', 'baz', 'qux', 'baz', 'bar']
})
df.set_index(['A','B'], inplace=True)
print(df.to_string())
        Values
A  B          
A1 foo       1
   bar       3
   fab       4
   baz       8
A2 foo       5
   baz       2
A3 qux       9
   baz       0
   bar       2
My ultimate goal is to replace all the "bar" and "baz" rows in the B column with a summed row called "other" (see below) in the simplest, most canonical Pandas way.
       Values
A  B          
A1 foo       1
   fab       4
   other    11
A2 foo       5
   other     2
A3 qux       9
   other     2
I managed to figure out how to create a mask for a MultiIndex DataFrame from a similar problem to highlight the rows we want to eventually aggregate, which are in an agg_list.
agg_list = ['bar', 'baz']
# Create a mask that highlights the rows in B that are in agg_list
filterFunc = lambda x: x.index.get_level_values('B') in agg_list
mask = df.groupby(level=['A','B']).apply(filterFunc)
This produces the expected mask:
print(mask.to_string())
A   B  
A1  bar     True
    baz     True
    fab    False
    foo    False
A2  baz     True
    foo    False
A3  bar     True
    baz     True
    qux    False
And I know how to remove the rows I no longer need:
# Remove rows in B col that are in agg_list using mask
df_masked = df[[~mask.loc[i1, i2] for i1,i2 in df.index]]
print(df_masked.to_string())
    Values
A  B          
A1 foo       1
   fab       4
A2 foo       5
A3 qux       9
But I don't know how to do the actual aggregation/sum on these rows and append it to each Multindexed row.
Similar problems I've seen didn't involve a Multindex DataFrame, so I can't quite use some of the solutions like this one, which has the same general idea of creating a mask and then append a summed row:
threshold = 6
m = df['value'] < threshold
df1 = df[~m].copy()
df1.loc['Z'] = df.loc[m, 'value'].sum()
or
m = df['value'] < threshold
df1 = df[~m].append(df.loc[m, ['value']].sum().rename('Z'))
You can do something as simple as below
b_others = df.B.replace({'bar': 'other', 'baz': 'other'})
df.groupby(['A', b_others]).sum()
Create the variable with replaced 'bar' and 'baz' values. Then, just use it to group.
Output
          Values
A  B            
A1 fab         4
   foo         1
   other      11
A2 foo         5
   other       2
A3 other       2
   qux         9
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With