I have the below input file and the code/script to add the regression line on the graph but the code gives this error:ValueError: x and y must have same first dimension
. I couldn't figure out that error.
How can I add the regression line and regression line equation on graph?
Input file:
-5.06 -4.27
-6.69 -7.28
-3.80 -3.51
-3.88 -2.79
-0.90 -0.81
2.10 2.59
-1.08 0.28
-5.00 -3.39
2.67 2.92
2.48 2.85
-5.10 -3.49
2.88 3.09
2.30 2.67
-3.47 -2.20
-0.90 -0.79
Script:
#!/usr/bin/python
import numpy as np
import pylab as plot
import matplotlib.pyplot as plt
import numpy, scipy, pylab, random
from matplotlib.ticker import MultipleLocator
import matplotlib as mpl
from matplotlib.ticker import MaxNLocator
from scipy import stats
with open("input.txt", "r") as f:
x=[]
y=[]
for line in f:
if not line.strip() or line.startswith('@') or line.startswith('#'): continue
row = line.split()
x.append(float(row[0]))
y.append(float(row[1]))
fig = plt.figure(figsize=(2.2,2.2), dpi=300)
ax = plt.subplot(111)
plt.xlim(4, -8)
plt.ylim(4, -8)
ax.xaxis.set_major_locator(MaxNLocator(6))
ax.yaxis.set_major_locator(MaxNLocator(6))
ax.xaxis.set_minor_locator(MultipleLocator(1))
ax.yaxis.set_minor_locator(MultipleLocator(1))
#regression part
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
line = slope*x+intercept
plt.plot(x, line, 'r', label='fitted line')
#end
plt.scatter(x,y,color=['black','black','black','black','black','black','black','black','black','black','black','black','black','black','black'], s=3.5)
plt.savefig("output.png", dpi=300)
To add a regression line, choose "Add Chart Element" from the "Chart Design" menu. In the dialog box, select "Trendline" and then "Linear Trendline". To add the R2 value, select "More Trendline Options" from the "Trendline menu. Lastly, select "Display R-squared value on chart".
The Linear Regression Equation The equation has the form Y= a + bX, where Y is the dependent variable (that's the variable that goes on the Y axis), X is the independent variable (i.e. it is plotted on the X axis), b is the slope of the line and a is the y-intercept.
A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when x = 0).
You cannot multiply a list with a float number. So you may create a numpy array from the input list x
,
line = slope*np.array(x)+intercept
More ideally you would read in your data using np.genfromtxt
,
x,y = np.genfromtxt("input.txt", unpack=True)
Complete example:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from matplotlib.ticker import MaxNLocator
from scipy import stats
x,y = np.genfromtxt("input.txt", unpack=True)
fig = plt.figure(figsize=(2.2,2.2), dpi=300)
ax = plt.subplot(111)
plt.xlim(4, -8)
plt.ylim(4, -8)
ax.xaxis.set_major_locator(MaxNLocator(6))
ax.yaxis.set_major_locator(MaxNLocator(6))
ax.xaxis.set_minor_locator(MultipleLocator(1))
ax.yaxis.set_minor_locator(MultipleLocator(1))
#regression part
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
line = slope*x+intercept
plt.plot(x, line, 'r', label='y={:.2f}x+{:.2f}'.format(slope,intercept))
#end
plt.scatter(x,y, color="k", s=3.5)
plt.legend(fontsize=9)
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With