I want to plot data of the following form, using matplotlib bar plot:
data = {'Room A': {'Shelf 1': {'Milk': 10, 'Water': 20}, 'Shelf 2': {'Sugar': 5, 'Honey': 6} }, 'Room B': {'Shelf 1': {'Wheat': 4, 'Corn': 7}, 'Shelf 2': {'Chicken': 2, 'Cow': 1} } }
The bar chart is supposed to look
The bar groups should be visible from the labels on the x axis. Is there any way to do this with matplotlib?
To plot a Grouped Bar Chart using Matplotlib, create a subplot using subplots() function, and in this subplot call bar() function with different X-axis position to draw each of the bar graph from different individual bar graphs, so that they form groups.
Now use plt. text() function to add value labels to the bar chart in this pass the x and y coordinates which will be i and y[i] which is nothing but the height of the bar and pass y[i] this represents the string which will be displayed on the given co-ordinates i.e, i and y[i].
Since I could not find a built-in solution for this in matplotlib, I coded my own:
#!/usr/bin/env python from matplotlib import pyplot as plt def mk_groups(data): try: newdata = data.items() except: return thisgroup = [] groups = [] for key, value in newdata: newgroups = mk_groups(value) if newgroups is None: thisgroup.append((key, value)) else: thisgroup.append((key, len(newgroups[-1]))) if groups: groups = [g + n for n, g in zip(newgroups, groups)] else: groups = newgroups return [thisgroup] + groups def add_line(ax, xpos, ypos): line = plt.Line2D([xpos, xpos], [ypos + .1, ypos], transform=ax.transAxes, color='black') line.set_clip_on(False) ax.add_line(line) def label_group_bar(ax, data): groups = mk_groups(data) xy = groups.pop() x, y = zip(*xy) ly = len(y) xticks = range(1, ly + 1) ax.bar(xticks, y, align='center') ax.set_xticks(xticks) ax.set_xticklabels(x) ax.set_xlim(.5, ly + .5) ax.yaxis.grid(True) scale = 1. / ly for pos in xrange(ly + 1): # change xrange to range for python3 add_line(ax, pos * scale, -.1) ypos = -.2 while groups: group = groups.pop() pos = 0 for label, rpos in group: lxpos = (pos + .5 * rpos) * scale ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes) add_line(ax, pos * scale, ypos) pos += rpos add_line(ax, pos * scale, ypos) ypos -= .1 if __name__ == '__main__': data = {'Room A': {'Shelf 1': {'Milk': 10, 'Water': 20}, 'Shelf 2': {'Sugar': 5, 'Honey': 6} }, 'Room B': {'Shelf 1': {'Wheat': 4, 'Corn': 7}, 'Shelf 2': {'Chicken': 2, 'Cow': 1} } } fig = plt.figure() ax = fig.add_subplot(1,1,1) label_group_bar(ax, data) fig.subplots_adjust(bottom=0.3) fig.savefig('label_group_bar_example.png')
The mk_groups
function takes a dictionary (or anything with an items() method, like collections.OrderedDict
) and converts it to a data format that is then used to create the chart. It is basically a list of the form:
[ [(label, bars_to_span), ...], ..., [(tick_label, bar_value), ...] ]
The add_line
function creates a vertical line in the subplot at the specified positions (in axes coordinates).
The label_group_bar
function takes a dictionary and creates the bar chart in the subplot with the labels beneath. The result from the example then looks like this.
Easier or better solutions and suggestions are still very much appreciated.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With