I have the following code:
library(gplots)
library(RColorBrewer);
setwd("~/Desktop")
mydata <- mtcars
hclustfunc <- function(x) hclust(x, method="complete")
distfunc <- function(x) dist(x,method="euclidean")
d <- distfunc(mydata)
fit <- hclustfunc(d)
clusters <- cutree(fit, h=100)
nofclust.height <- length(unique(as.vector(clusters)));
# Colorings
hmcols <- rev(redgreen(2750))
selcol <- colorRampPalette(brewer.pal(12,"Set3"))
selcol2 <- colorRampPalette(brewer.pal(9,"Set1"))
clustcol.height = selcol2(nofclust.height);
heatmap.2(as.matrix(mydata),
trace='none',
dendrogram='both',
key=F,
Colv=T,
scale='row',
hclust=hclustfunc, distfun=distfunc, col=hmcols,
symbreak=T,
margins=c(7,10), keysize=0.1,
lwid=c(5,0.5,3), lhei=c(0.05,0.5),
lmat=rbind(c(5,0,4),c(3,1,2)),
labRow=rownames(mydata),
#ColSideColors=clustcol.height[clusters], # This line doesn't work
RowSideColors=clustcol.height[clusters])
Which produce the following figure:
What I want to do is to perform clustering on both row and column and show clustering bars (RowSideColors and ColSideColors) next to dendogram. How can I achieve that?
At the moment I only succeed in showing RowSideColors
but not the ColSideColors
one.
In order to show both RowSideColors
and ColSideColors
you have to obtain cluster assignments for rows and columns of the matrix separately. At the moment object 'cluster' contains clusters that correspond to rows only.
# set the custom distance and clustering functions, per your example
hclustfunc <- function(x) hclust(x, method="complete")
distfunc <- function(x) dist(x, method="euclidean")
# perform clustering on rows and columns
cl.row <- hclustfunc(distfunc(mydata))
cl.col <- hclustfunc(distfunc(t(mydata)))
# extract cluster assignments; i.e. k=8 (rows) k=5 (columns)
gr.row <- cutree(cl.row, 8)
gr.col <- cutree(cl.col, 5)
# require(RColorBrewer)
col1 <- brewer.pal(8, "Set1")
col2 <- brewer.pal(5, "Pastel1")
# require(gplots)
heatmap.2(as.matrix(mydata), hclustfun=hclustfunc, distfun=distfunc,
RowSideColors=col1[gr.row], ColSideColors=col2[gr.col])
You can examine the clustering a priori with plot(cl.row)
and plot(cl.col)
. Also you may play with the RColorBrewer
library to select the most appropriate colour-coding. Possibly a sequential palette may be better to avoid over-colouring.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With