Now I get about 3.6GB data per second in memory, and I need to write them on my SSD continuously. I used CrystalDiskMark to test the writing speed of my SSD, it is almost 6GB per second, so I had thought this work should not be that hard.
![my SSD test result][1]:
[1]https://plus.google.com/u/0/photos/photo/106876803948041178149/6649598887699308850?authkey=CNbb5KjF8-jxJQ "test result":
My computer is Windows 10, using Visual Studio 2017 community.
I found this question and tried the highest voted answer. Unfortunately, the writing speed was only about 1s/GB for his option_2, far slower than tested by CrystalDiskMark. And then I tried memory mapping, this time writing becomes faster, about 630ms/GB, but still much slower. Then I tried multi-thread memory mapping, it seems that when the number of threads is 4, the speed was about 350ms/GB, and when I add the threads' number, the writing speed didn't go up anymore.
Code for memory mapping:
#include <fstream>
#include <chrono>
#include <vector>
#include <cstdint>
#include <numeric>
#include <random>
#include <algorithm>
#include <iostream>
#include <cassert>
#include <thread>
#include <windows.h>
#include <sstream>
// Generate random data
std::vector<int> GenerateData(std::size_t bytes) {
assert(bytes % sizeof(int) == 0);
std::vector<int> data(bytes / sizeof(int));
std::iota(data.begin(), data.end(), 0);
std::shuffle(data.begin(), data.end(), std::mt19937{ std::random_device{}() });
return data;
}
// Memory mapping
int map_write(int* data, int size, int id){
char* name = (char*)malloc(100);
sprintf_s(name, 100, "D:\\data_%d.bin",id);
HANDLE hFile = CreateFile(name, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);//
if (hFile == INVALID_HANDLE_VALUE){
return -1;
}
Sleep(0);
DWORD dwFileSize = size;
char* rname = (char*)malloc(100);
sprintf_s(rname, 100, "data_%d.bin", id);
HANDLE hFileMap = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, dwFileSize, rname);//create file
if (hFileMap == NULL) {
CloseHandle(hFile);
return -2;
}
PVOID pvFile = MapViewOfFile(hFileMap, FILE_MAP_WRITE, 0, 0, 0);//Acquire the address of file on disk
if (pvFile == NULL) {
CloseHandle(hFileMap);
CloseHandle(hFile);
return -3;
}
PSTR pchAnsi = (PSTR)pvFile;
memcpy(pchAnsi, data, dwFileSize);//memery copy
UnmapViewOfFile(pvFile);
CloseHandle(hFileMap);
CloseHandle(hFile);
return 0;
}
// Multi-thread memory mapping
void Mem2SSD_write(int* data, int size){
int part = size / sizeof(int) / 4;
int index[4];
index[0] = 0;
index[1] = part;
index[2] = part * 2;
index[3] = part * 3;
std::thread ta(map_write, data + index[0], size / 4, 10);
std::thread tb(map_write, data + index[1], size / 4, 11);
std::thread tc(map_write, data + index[2], size / 4, 12);
std::thread td(map_write, data + index[3], size / 4, 13);
ta.join();
tb.join();
tc.join();
td.join();
}
//Test:
int main() {
const std::size_t kB = 1024;
const std::size_t MB = 1024 * kB;
const std::size_t GB = 1024 * MB;
for (int i = 0; i < 10; ++i) {
std::vector<int> data = GenerateData(1 * GB);
auto startTime = std::chrono::high_resolution_clock::now();
Mem2SSD_write(&data[0], 1 * GB);
auto endTime = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(endTime - startTime).count();
std::cout << "1G writing cost: " << duration << " ms" << std::endl;
}
system("pause");
return 0;
}
So I'd like to ask, is there any faster writing method for C++ to writing huge files? Or, why can't I write as fast as tested by CrystalDiskMark? How does CrystalDiskMark write?
Any help would be greatly appreciated. Thank you!
first of all this is not c++ question but os related question. for get maximum performance need need use os specific low level api call, which not exist in general c++ libs. from your code clear visible that you use windows api, so search solution for windows how minimum.
from CreateFileW
function:
When
FILE_FLAG_NO_BUFFERING
is combined withFILE_FLAG_OVERLAPPED
, the flags give maximum asynchronous performance, because the I/O does not rely on the synchronous operations of the memory manager.
so we need use combination of this 2 flags in call CreateFileW
or FILE_NO_INTERMEDIATE_BUFFERING
in call NtCreateFile
also extend file size and valid data length take some time, so better if final file at begin is known - just set file final size via NtSetInformationFile
with FileEndOfFileInformation
or via SetFileInformationByHandle
with FileEndOfFileInfo
. and then set valid data length with SetFileValidData
or via NtSetInformationFile
with FileValidDataLengthInformation. set valid data length require SE_MANAGE_VOLUME_NAME
privilege enabled when opening a file initially (but not when call SetFileValidData
)
also look for file compression - if file compressed (it will be compressed by default if created in compressed folder) this is very slow writting. so need disbale file compression via FSCTL_SET_COMPRESSION
then when we use asynchronous I/O (fastest way) we not need create several dedicated threads. instead we need determine number of I/O requests run in concurrent. if you use CrystalDiskMark it actually run CdmResource\diskspd\diskspd64.exe for test and this is coresponded to it -o<count>
parameter (run diskspd64.exe /? > h.txt
for look parameters list).
use non Buffering I/O make task more hard, because exist 3 additional requirements:
NtQueryInformationFile
with FileAlignmentInformation
or GetFileInformationByHandleEx
with FileAlignmentInfo
in most situations, page-aligned memory will also be sector-aligned, because the case where the sector size is larger than the page size is rare.
so almost always buffers allocated with VirtualAlloc function and multiple page size (4,096 bytes ) is ok. in concrete test for smaller code size i use this assumption
struct WriteTest
{
enum { opCompression, opWrite };
struct REQUEST : IO_STATUS_BLOCK
{
WriteTest* pTest;
ULONG opcode;
ULONG offset;
};
LONGLONG _TotalSize, _BytesLeft;
HANDLE _hFile;
ULONG64 _StartTime;
void* _pData;
REQUEST* _pRequests;
ULONG _BlockSize;
ULONG _ConcurrentRequestCount;
ULONG _dwThreadId;
LONG _dwRefCount;
WriteTest(ULONG BlockSize, ULONG ConcurrentRequestCount)
{
if (BlockSize & (BlockSize - 1))
{
__debugbreak();
}
_BlockSize = BlockSize, _ConcurrentRequestCount = ConcurrentRequestCount;
_dwRefCount = 1, _hFile = 0, _pRequests = 0, _pData = 0;
_dwThreadId = GetCurrentThreadId();
}
~WriteTest()
{
if (_pData)
{
VirtualFree(_pData, 0, MEM_RELEASE);
}
if (_pRequests)
{
delete [] _pRequests;
}
if (_hFile)
{
NtClose(_hFile);
}
PostThreadMessageW(_dwThreadId, WM_QUIT, 0, 0);
}
void Release()
{
if (!InterlockedDecrement(&_dwRefCount))
{
delete this;
}
}
void AddRef()
{
InterlockedIncrementNoFence(&_dwRefCount);
}
void StartWrite()
{
IO_STATUS_BLOCK iosb;
FILE_VALID_DATA_LENGTH_INFORMATION fvdl;
fvdl.ValidDataLength.QuadPart = _TotalSize;
NTSTATUS status;
if (0 > (status = NtSetInformationFile(_hFile, &iosb, &_TotalSize, sizeof(_TotalSize), FileEndOfFileInformation)) ||
0 > (status = NtSetInformationFile(_hFile, &iosb, &fvdl, sizeof(fvdl), FileValidDataLengthInformation)))
{
DbgPrint("FileValidDataLength=%x\n", status);
}
ULONG offset = 0;
ULONG dwNumberOfBytesTransfered = _BlockSize;
_BytesLeft = _TotalSize + dwNumberOfBytesTransfered;
ULONG ConcurrentRequestCount = _ConcurrentRequestCount;
REQUEST* irp = _pRequests;
_StartTime = GetTickCount64();
do
{
irp->opcode = opWrite;
irp->pTest = this;
irp->offset = offset;
offset += dwNumberOfBytesTransfered;
DoWrite(irp++);
} while (--ConcurrentRequestCount);
}
void FillBuffer(PULONGLONG pu, LONGLONG ByteOffset)
{
ULONG n = _BlockSize / sizeof(ULONGLONG);
do
{
*pu++ = ByteOffset, ByteOffset += sizeof(ULONGLONG);
} while (--n);
}
void DoWrite(REQUEST* irp)
{
LONG BlockSize = _BlockSize;
LONGLONG BytesLeft = InterlockedExchangeAddNoFence64(&_BytesLeft, -BlockSize) - BlockSize;
if (0 < BytesLeft)
{
LARGE_INTEGER ByteOffset;
ByteOffset.QuadPart = _TotalSize - BytesLeft;
PVOID Buffer = RtlOffsetToPointer(_pData, irp->offset);
FillBuffer((PULONGLONG)Buffer, ByteOffset.QuadPart);
AddRef();
NTSTATUS status = NtWriteFile(_hFile, 0, 0, irp, irp, Buffer, BlockSize, &ByteOffset, 0);
if (0 > status)
{
OnComplete(status, 0, irp);
}
}
else if (!BytesLeft)
{
// write end
ULONG64 time = GetTickCount64() - _StartTime;
WCHAR sz[64];
StrFormatByteSizeW((_TotalSize * 1000) / time, sz, RTL_NUMBER_OF(sz));
DbgPrint("end:%S\n", sz);
}
}
static VOID NTAPI _OnComplete(
_In_ NTSTATUS status,
_In_ ULONG_PTR dwNumberOfBytesTransfered,
_Inout_ PVOID Ctx
)
{
reinterpret_cast<REQUEST*>(Ctx)->pTest->OnComplete(status, dwNumberOfBytesTransfered, reinterpret_cast<REQUEST*>(Ctx));
}
VOID OnComplete(NTSTATUS status, ULONG_PTR dwNumberOfBytesTransfered, REQUEST* irp)
{
if (0 > status)
{
DbgPrint("OnComplete[%x]: %x\n", irp->opcode, status);
}
else
switch (irp->opcode)
{
default:
__debugbreak();
case opCompression:
StartWrite();
break;
case opWrite:
if (dwNumberOfBytesTransfered == _BlockSize)
{
DoWrite(irp);
}
else
{
DbgPrint(":%I64x != %x\n", dwNumberOfBytesTransfered, _BlockSize);
}
}
Release();
}
NTSTATUS Create(POBJECT_ATTRIBUTES poa, ULONGLONG size)
{
if (!(_pRequests = new REQUEST[_ConcurrentRequestCount]) ||
!(_pData = VirtualAlloc(0, _BlockSize * _ConcurrentRequestCount, MEM_COMMIT, PAGE_READWRITE)))
{
return STATUS_INSUFFICIENT_RESOURCES;
}
ULONGLONG sws = _BlockSize - 1;
LARGE_INTEGER as;
_TotalSize = as.QuadPart = (size + sws) & ~sws;
HANDLE hFile;
IO_STATUS_BLOCK iosb;
NTSTATUS status = NtCreateFile(&hFile,
DELETE|FILE_GENERIC_READ|FILE_GENERIC_WRITE&~FILE_APPEND_DATA,
poa, &iosb, &as, 0, 0, FILE_OVERWRITE_IF,
FILE_NON_DIRECTORY_FILE|FILE_NO_INTERMEDIATE_BUFFERING, 0, 0);
if (0 > status)
{
return status;
}
_hFile = hFile;
if (0 > (status = RtlSetIoCompletionCallback(hFile, _OnComplete, 0)))
{
return status;
}
static USHORT cmp = COMPRESSION_FORMAT_NONE;
REQUEST* irp = _pRequests;
irp->pTest = this;
irp->opcode = opCompression;
AddRef();
status = NtFsControlFile(hFile, 0, 0, irp, irp, FSCTL_SET_COMPRESSION, &cmp, sizeof(cmp), 0, 0);
if (0 > status)
{
OnComplete(status, 0, irp);
}
return status;
}
};
void WriteSpeed(POBJECT_ATTRIBUTES poa, ULONGLONG size, ULONG BlockSize, ULONG ConcurrentRequestCount)
{
BOOLEAN b;
NTSTATUS status = RtlAdjustPrivilege(SE_MANAGE_VOLUME_PRIVILEGE, TRUE, FALSE, &b);
if (0 <= status)
{
status = STATUS_INSUFFICIENT_RESOURCES;
if (WriteTest * pTest = new WriteTest(BlockSize, ConcurrentRequestCount))
{
status = pTest->Create(poa, size);
pTest->Release();
if (0 <= status)
{
MessageBoxW(0, 0, L"Test...", MB_OK|MB_ICONINFORMATION);
}
}
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With