Here is my code:
library(MASS)
library(caret)
df <- Boston
set.seed(3721)
cv.10.folds <- createFolds(df$medv, k = 10)
lasso_grid <- expand.grid(fraction=c(1,0.1,0.01,0.001))
lasso <- train(medv ~ .,
data = df,
preProcess = c("center", "scale"),
method ='lasso',
tuneGrid = lasso_grid,
trControl= trainControl(method = "cv",
number = 10,
index = cv.10.folds))
lasso
Unlike linear model, I cannot find the coefficients of Lasso regression model from summary(lasso). How should I do that? Or maybe I can use glmnet?
Lasso regression performs L1 regularization, which adds a penalty equal to the absolute value of the magnitude of coefficients. This type of regularization can result in sparse models with few coefficients; Some coefficients can become zero and eliminated from the model.
Lasso shrinks the coefficient estimates towards zero and it has the effect of setting variables exactly equal to zero when lambda is large enough while ridge does not. Hence, much like the best subset selection method, lasso performs variable selection.
The lasso performs shrinkage so that there are "corners'' in the constraint, which in two dimensions corresponds to a diamond. If the sum of squares "hits'' one of these corners, then the coefficient corresponding to the axis is shrunk to zero.
We can evaluate the Lasso Regression model on the housing dataset using repeated 10-fold cross-validation and report the average mean absolute error (MAE) on the dataset.
When you train with method="lasso"
, enet from elasticnet is called:
lasso$finalModel$call
elasticnet::enet(x = as.matrix(x), y = y, lambda = 0)
And the vignette writes:
The LARS-EN algorithm computes the complete elastic net solution simultaneously for ALL values of the shrinkage parameter in the same computational cost as a least squares fit
Under lasso$finalModel$beta.pure
, you have coefficients for all 16 sets of coefficients corresponding to 16 values of L1 norm under lasso$finalModel$L1norm
:
length(lasso$finalModel$L1norm)
[1] 16
dim(lasso$finalModel$beta.pure)
[1] 16 13
You can see it using predict too:
predict(lasso$finalModel,type="coef")
$s
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
$fraction
[1] 0.00000000 0.06666667 0.13333333 0.20000000 0.26666667 0.33333333
[7] 0.40000000 0.46666667 0.53333333 0.60000000 0.66666667 0.73333333
[13] 0.80000000 0.86666667 0.93333333 1.00000000
$mode
[1] "step"
$coefficients
crim zn indus chas nox rm age
0 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.000000 0.00000000
1 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.000000 0.00000000
2 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 1.677765 0.00000000
3 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 2.571071 0.00000000
4 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 2.716138 0.00000000
5 0.00000000 0.0000000 0.00000000 0.2586083 0.0000000 2.885615 0.00000000
6 -0.05232643 0.0000000 0.00000000 0.3543411 0.0000000 2.953605 0.00000000
7 -0.13286554 0.0000000 0.00000000 0.4095229 0.0000000 2.984026 0.00000000
8 -0.21665925 0.0000000 0.00000000 0.5196189 -0.5933941 3.003512 0.00000000
9 -0.32168140 0.3326103 0.00000000 0.6044308 -1.0246080 2.973693 0.00000000
10 -0.33568474 0.3771889 -0.02165730 0.6165190 -1.0728128 2.967696 0.00000000
11 -0.42820289 0.4522827 -0.09212253 0.6407298 -1.2474934 2.932427 0.00000000
12 -0.62605363 0.7005114 0.00000000 0.6574277 -1.5655601 2.832726 0.00000000
13 -0.88747102 1.0150162 0.00000000 0.6856705 -1.9476465 2.694820 0.00000000
14 -0.91679342 1.0613165 0.09956489 0.6837833 -2.0217269 2.684401 0.00000000
15 -0.92906457 1.0826390 0.14103943 0.6824144 -2.0587536 2.676877 0.01948534
The hyper-parameter tuned by caret is the fraction of the maximum L1 norm, so in the result you have provided, it will be 1, i.e the max :
lasso
The lasso
506 samples
13 predictor
Pre-processing: centered (13), scaled (13)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 51, 51, 51, 50, 51, 50, ...
Resampling results across tuning parameters:
fraction RMSE Rsquared MAE
0.001 9.182599 0.5075081 6.646013
0.010 9.022117 0.5075081 6.520153
0.100 7.597607 0.5572499 5.402851
1.000 6.158513 0.6033310 4.140362
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was fraction = 1.
To get the coefficients out for the optimal fraction:
predict(lasso$finalModel,type="coef",s=16)
$s
[1] 16
$fraction
[1] 1
$mode
[1] "step"
$coefficients
crim zn indus chas nox rm
-0.92906457 1.08263896 0.14103943 0.68241438 -2.05875361 2.67687661
age dis rad tax ptratio black
0.01948534 -3.10711605 2.66485220 -2.07883689 -2.06264585 0.85010886
lstat
-3.74733185
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With