I have my own implementation of the covariance function based on the equation:
'''
Calculate the covariance coefficient between two variables.
'''
import numpy as np
X = np.array([171, 184, 210, 198, 166, 167])
Y = np.array([78, 77, 98, 110, 80, 69])
# Expected value function.
def E(X, P):
expectedValue = 0
for i in np.arange(0, np.size(X)):
expectedValue += X[i] * (P[i] / np.size(X))
return expectedValue
# Covariance coefficient function.
def covariance(X, Y):
'''
Calculate the product of the multiplication for each pair of variables
values.
'''
XY = X * Y
# Calculate the expected values for each variable and for the XY.
EX = E(X, np.ones(np.size(X)))
EY = E(Y, np.ones(np.size(Y)))
EXY = E(XY, np.ones(np.size(XY)))
# Calculate the covariance coefficient.
return EXY - (EX * EY)
# Display matrix of the covariance coefficient values.
covMatrix = np.array([[covariance(X, X), covariance(X, Y)],
[covariance(Y, X), covariance(Y, Y)]])
print("My function:", covMatrix)
# Display standard numpy.cov() covariance coefficient matrix.
print("Numpy.cov() function:", np.cov([X, Y]))
But the problem is, that I'm getting different values from my function and from numpy.cov()
, ie:
My function: [[ 273.88888889 190.61111111]
[ 190.61111111 197.88888889]]
Numpy.cov() function: [[ 328.66666667 228.73333333]
[ 228.73333333 237.46666667]]
Why is that? How is numpy.cov()
function implemented? If the function numpy.cov()
is well-implemented, what am I doing wrong? I'll just say, that results from my function covariance()
are consistent with the results from paper
examples in the internet for calculating the covariance coefficient, eg http://www.naukowiec.org/wzory/statystyka/kowariancja_11.html.
The numpy function has a different normalization to yours as a default setting. Try instead
>>> np.cov([X, Y], ddof=0)
array([[ 273.88888889, 190.61111111],
[ 190.61111111, 197.88888889]])
References:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With