In an interest to delve deeper into how memory is allocated and stored, I have written an application that can scan memory address space, find a value, and write out a new value.
I developed a sample application with the end goal to be able to programatically locate my array, and overwrite it with a new sequence of numbers. In this situation, I created a single dimensional array, with 5 elements, e.g.
int[] array = new int[] {8,7,6,5,4};
I ran my application and searched for a sequence of the five numbers above. I was looking for any value that fell between 4 and 8, for a total of 5 numbers in a row. Unfortunately, my sequential numbers within the array matched hundreds of results, as the numbers 4 through 8, in no particular sequence happened to be next to each other, in memory, in many situations.
Is there any way to distinguish that a set of numbers within memory, represents an array, not simply integers that are next to each other? Is there any way of knowing that if I find a certain value, that the matching values proceeding it are that of an array?
I would assume that when I declare int[] array
, its pointing at the first address of my array, which would provide some kind of meta-data to what existed in the array, e.g.
0x123456789 meta-data, 5 - 32 bit integers 0x123456789 + 32 "8" 0x123456789 + 64 "7" 0x123456789 + 96 "6" 0x123456789 + 128 "5" 0x123456789 + 160 "4"
Am I way off base?
Debug + Windows + Memory + Memory 1, set the Address field to "array". You'll see this when you switch the view to "4-byte Integer":
0x018416BC 6feb2c84 00000005 00000008 00000007 00000006 00000005 00000004
The first address is the address of the object in the garbage collected heap, plus the part of the object header that's at a negative offset (syncblk index). You cannot guess this value, the GC moves it around. The 2nd hex number is the 'type handle' for the array type (aka method table pointer). You cannot guess this value, type handles are created by the CLR on demand. The 3rd number is the array length. The rest of them are the array element values.
The odds of reliably finding this array back at runtime without a debugger are quite low. There isn't much point in trying.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With